Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.

J. Khurgin
{"title":"Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.","authors":"J. Khurgin","doi":"10.1364/JOSAB.6.001673","DOIUrl":null,"url":null,"abstract":"Nonlinear optical properties of quantum wells (QW’s) and superlattices (SL’s) have recently become an object of intense studies 1,2. Quantum confinement of carriers leads to existence of strong resonances in the absorption spectra attributed to both conduction-to-valence band 3 and intersubband 4 transition. That, in turn, leads to large optical nonlinearities. Third order nonlinearity in symmetrical QW’s and SL’s have been studied by numerous authors 5-8. More recently, calculations of second order nonlinear coefficients of asymmetric QW structures were made for interband 9,10 and intersubband 10,11 transitions. Second -order nonlinear properties based on interband processes in various asymmetric QW structures were evaluated in Ref 10 for wide range of materials and QW geometries. It was snown that although both second harmonic generation (SHG) and linear electro-optic (LEO) coefficient are large (on the order of 10−10m /V) they are at least an order of magnitude smaller than what could be expected from a two-level asymmetric system with comparable transition strength. The reason for that is compensation of second-order susceptibilities associated with various ground and excited states and having opposite signs.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.6.001673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Nonlinear optical properties of quantum wells (QW’s) and superlattices (SL’s) have recently become an object of intense studies 1,2. Quantum confinement of carriers leads to existence of strong resonances in the absorption spectra attributed to both conduction-to-valence band 3 and intersubband 4 transition. That, in turn, leads to large optical nonlinearities. Third order nonlinearity in symmetrical QW’s and SL’s have been studied by numerous authors 5-8. More recently, calculations of second order nonlinear coefficients of asymmetric QW structures were made for interband 9,10 and intersubband 10,11 transitions. Second -order nonlinear properties based on interband processes in various asymmetric QW structures were evaluated in Ref 10 for wide range of materials and QW geometries. It was snown that although both second harmonic generation (SHG) and linear electro-optic (LEO) coefficient are large (on the order of 10−10m /V) they are at least an order of magnitude smaller than what could be expected from a two-level asymmetric system with comparable transition strength. The reason for that is compensation of second-order susceptibilities associated with various ground and excited states and having opposite signs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称量子阱结构的二阶子带间非线性光学磁化率。
量子阱(QW’s)和超晶格(SL’s)的非线性光学性质最近成为研究的热点1,2。载流子的量子约束导致吸收光谱中存在强共振,这是由于导价带3和子带4之间的跃迁。这反过来又导致了巨大的光学非线性。对称QW和SL中的三阶非线性已经被许多作者研究了5-8。最近,对非对称QW结构的二阶非线性系数进行了计算,计算了带间9,10和子带间10,11跃迁。基于带间过程的二阶非线性性质在各种不对称量子阱结构中被评估在Ref 10中广泛的材料和量子阱几何形状。研究表明,虽然二次谐波产生(SHG)和线性电光(LEO)系数都很大(在10−10m /V的数量级上),但它们至少比具有可比跃迁强度的两能级非对称系统的预期值小一个数量级。其原因是与各种基态和激发态相关的二阶磁化率的补偿,并且具有相反的符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Optical Properties of Quantum-Confined CdSe Microcrystallites Inducing normally forbidden transitions within the conduction band of GaAs quantum wells Monte Carlo Simulation of Femtosecond Spectroscopy in Semiconductor Heterostructures Temperature-Dependent Characteristics of GaAs/AlGaAs Multiple Quantum Well Optical Modulators Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1