S. Park, R. Morgan, Y. Z. Hu, M. Lindberg, S. Koch, N. Peyghambarian
{"title":"Nonlinear Optical Properties of Quantum-Confined CdSe Microcrystallites","authors":"S. Park, R. Morgan, Y. Z. Hu, M. Lindberg, S. Koch, N. Peyghambarian","doi":"10.1364/JOSAB.7.002097","DOIUrl":null,"url":null,"abstract":"Lately, quantum confinement effects in semiconductor microstructures have been studied because of their interesting physics and possible nonlinear optical device applications.1-2 The basic optical properties of quantum dots (QDs), which exhibit 3D-confinement effects, have recently been discussed theoretically.1 In this paper, we report a comprehensive experimental study of the steady-state nonlinear optical properties of specially-prepared quantum-confined CdSe microcrystallites suspended in a transparent borosilicate glass matrix.2 Three samples were investigated. The average crystallite diameters of these samples were measured using transmission electron microscopy to be 30 Å, 44 Å, and 79 Å, respectively.2 For bulk CdSe, the exciton Bohr radius (aex) is ≅ 56 Å therefore, our samples fall within the so-called intermediate confinement regime (ah< R","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.7.002097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69
Abstract
Lately, quantum confinement effects in semiconductor microstructures have been studied because of their interesting physics and possible nonlinear optical device applications.1-2 The basic optical properties of quantum dots (QDs), which exhibit 3D-confinement effects, have recently been discussed theoretically.1 In this paper, we report a comprehensive experimental study of the steady-state nonlinear optical properties of specially-prepared quantum-confined CdSe microcrystallites suspended in a transparent borosilicate glass matrix.2 Three samples were investigated. The average crystallite diameters of these samples were measured using transmission electron microscopy to be 30 Å, 44 Å, and 79 Å, respectively.2 For bulk CdSe, the exciton Bohr radius (aex) is ≅ 56 Å therefore, our samples fall within the so-called intermediate confinement regime (ah< R