26.7 A 2.6b/cycle-architecture-based 10b 1 JGS/s 15.4mW 4×-time-interleaved SAR ADC with a multistep hardware-retirement technique

Hyeok-Ki Hong, Hyun-Wook Kang, Dong-Shin Jo, Dong-Suk Lee, Yong-Sang You, Yong-Hee Lee, Hojin Park, S. Ryu
{"title":"26.7 A 2.6b/cycle-architecture-based 10b 1 JGS/s 15.4mW 4×-time-interleaved SAR ADC with a multistep hardware-retirement technique","authors":"Hyeok-Ki Hong, Hyun-Wook Kang, Dong-Shin Jo, Dong-Suk Lee, Yong-Sang You, Yong-Hee Lee, Hojin Park, S. Ryu","doi":"10.1109/ISSCC.2015.7063130","DOIUrl":null,"url":null,"abstract":"With the growing interest in time-interleaved (TI) structures, the conversion rates of ADCs have greatly improved, which has inevitably increased power consumption. Despite the advantages of TI structures, power consumption is increased due to the stricter matching requirements between channels; in some cases, >50% of total power is for calibration purposes. Thus, to realize high-speed and high-resolution ADCs with TI structures, it is important to alleviate the calibration burden by choosing a suitable number of power-efficient high-speed single channels. Previously reported CDAC-based 2b/cycle structures made contributions in realizing high-speed single-channel ADCs with high resolution by using additional capacitive DACs and modified switching logic. The power overhead and the complexity of the additional logic and DACs for 2b/cycle implementations have been of trivial concern for low resolution ADCs. However, as resolution increases, the complexity of such circuits becomes considerable, with power taking up a big share of the total. In this paper, a multi-step hardware-retirement (MSHR) technique, which disables low-accuracy hardware blocks of scaled sizes with the requirement relaxations from redundancies in an advancement to the reconfiguration scheme in the work of Kong et al. (2013), is reported to alleviate the overhead of additional logic and DACs for ADCs, requiring high resolutions. A low-power 2.6b/cycle-based SAR ADC architecture is presented as a proof of concept.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

With the growing interest in time-interleaved (TI) structures, the conversion rates of ADCs have greatly improved, which has inevitably increased power consumption. Despite the advantages of TI structures, power consumption is increased due to the stricter matching requirements between channels; in some cases, >50% of total power is for calibration purposes. Thus, to realize high-speed and high-resolution ADCs with TI structures, it is important to alleviate the calibration burden by choosing a suitable number of power-efficient high-speed single channels. Previously reported CDAC-based 2b/cycle structures made contributions in realizing high-speed single-channel ADCs with high resolution by using additional capacitive DACs and modified switching logic. The power overhead and the complexity of the additional logic and DACs for 2b/cycle implementations have been of trivial concern for low resolution ADCs. However, as resolution increases, the complexity of such circuits becomes considerable, with power taking up a big share of the total. In this paper, a multi-step hardware-retirement (MSHR) technique, which disables low-accuracy hardware blocks of scaled sizes with the requirement relaxations from redundancies in an advancement to the reconfiguration scheme in the work of Kong et al. (2013), is reported to alleviate the overhead of additional logic and DACs for ADCs, requiring high resolutions. A low-power 2.6b/cycle-based SAR ADC architecture is presented as a proof of concept.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
26.7基于2.6b/周期架构的10b 1 JGS/s 15.4mW 4×-time-interleaved SAR ADC,采用多步硬件退役技术
随着人们对时间交错(TI)结构的兴趣日益浓厚,adc的转换率大大提高,这不可避免地增加了功耗。尽管TI结构具有优势,但由于通道之间的匹配要求更严格,因此功耗增加;在某些情况下,大于50%的总功率用于校准。因此,为了实现TI结构的高速高分辨率adc,通过选择合适数量的节能高速单通道来减轻校准负担非常重要。先前报道的基于cdac的2b/周期结构通过使用额外的电容式dac和改进的开关逻辑,在实现高分辨率的高速单通道adc方面做出了贡献。对于低分辨率adc来说,功率开销和用于2b/周期实现的附加逻辑和dac的复杂性是微不足道的。然而,随着分辨率的提高,这种电路的复杂性变得相当大,功率占总功率的很大一部分。在本文中,一种多步硬件退役(MSHR)技术,在Kong等人(2013)的工作中,通过从冗余到重构方案的要求放松来禁用按比例大小的低精度硬件块,据报道,该技术可以减轻adc的额外逻辑和dac的开销,需要高分辨率。提出了一种基于低功耗2.6b/周期的SAR ADC架构作为概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1