Feature Extraction of Colorectal Endoscopic Images for Computer-Aided Diagnosis with CNN

Takumi Okamoto, Masayuki Odagawa, T. Koide, Shinji Tanaka, Toru Tamaki, B. Raytchev, K. Kaneda, S. Yoshida, H. Mieno
{"title":"Feature Extraction of Colorectal Endoscopic Images for Computer-Aided Diagnosis with CNN","authors":"Takumi Okamoto, Masayuki Odagawa, T. Koide, Shinji Tanaka, Toru Tamaki, B. Raytchev, K. Kaneda, S. Yoshida, H. Mieno","doi":"10.1109/ISDCS.2019.8719104","DOIUrl":null,"url":null,"abstract":"This paper introduces a feature extraction method for Narrow-Band Imaging (NBI) colorectal endoscopic images with Convolutional Neural Network (CNN) for Support Vector Machine (SVM) as a Computer-Aided Diagnosis (CAD) system. The proposed method using the result of pre-learned CNN as a feature extraction module on Bag-of-Features (BoF) framework and SVM inputs the result for classification. We estimated identification accuracy compare with the BoF framework and the proposed method. As an estimation result, we achieved that the proposed method can identify cancer or not with about over 90% accuracy.","PeriodicalId":293660,"journal":{"name":"2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS.2019.8719104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper introduces a feature extraction method for Narrow-Band Imaging (NBI) colorectal endoscopic images with Convolutional Neural Network (CNN) for Support Vector Machine (SVM) as a Computer-Aided Diagnosis (CAD) system. The proposed method using the result of pre-learned CNN as a feature extraction module on Bag-of-Features (BoF) framework and SVM inputs the result for classification. We estimated identification accuracy compare with the BoF framework and the proposed method. As an estimation result, we achieved that the proposed method can identify cancer or not with about over 90% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN计算机辅助诊断的结肠内镜图像特征提取
本文介绍了一种基于卷积神经网络(CNN)支持向量机(SVM)作为计算机辅助诊断(CAD)系统的窄带成像(NBI)结肠内镜图像特征提取方法。该方法将CNN预学习的结果作为特征提取模块,在特征袋(Bag-of-Features, BoF)框架上进行特征提取,并将结果输入SVM进行分类。通过与BoF框架和所提方法的比较,估计了识别精度。作为估计结果,我们实现了所提出的方法可以识别癌症或非癌症,准确率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low-Power Approximate Multiply-Add Unit Low Cost and Robust Field-Deployable Environmental Sensor for Smart Agriculture A Novel Step-shaped Gate Tunnel FET with Low Ambipolar Current Analysis of IGBT Charging/Discharging Mechanism for Accurate Compact Modeling Analysis of Embedded-Diode Performance in MOSFET under Switching Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1