17.1 A 0.6V 1.5GHz 84Mb SRAM design in 14nm FinFET CMOS technology

E. Karl, Z. Guo, J. Conary, Jeffrey L. Miller, Y. Ng, Satyanand Nalam, Daeyeon Kim, J. Keane, U. Bhattacharya, Kevin Zhang
{"title":"17.1 A 0.6V 1.5GHz 84Mb SRAM design in 14nm FinFET CMOS technology","authors":"E. Karl, Z. Guo, J. Conary, Jeffrey L. Miller, Y. Ng, Satyanand Nalam, Daeyeon Kim, J. Keane, U. Bhattacharya, Kevin Zhang","doi":"10.1109/ISSCC.2015.7063050","DOIUrl":null,"url":null,"abstract":"The growth of battery-powered mobile and wearable devices has increased the importance of low-power operation and cost in system-on-a-chip (SoC) design. Supply-voltage scaling is the predominant approach to active power reduction for SoC design, including voltage scaling for on-die memory given increasing levels of memory integration. SRAM can limit the minimum operating voltage (VMIN) of a design, often leading to the introduction of separate voltage supplies for on-die memory. Additional supplies increase platform cost, and operating memory at higher voltage leads to increased power consumption. The introduction of trigate devices at the 22nm technology node delivered superior short channel effects and subthreshold slope relative to existing bulk planar device technology enabling reduction in threshold voltage within a fixed leakage constraint. Lower transistor Vth, improvements to random device variability, and assist circuits to overcome device-size quantization enabled a >150mV reduction in SRAM VMIN [1]. At the 14nm technology node, FinFET device-size quantization remains a challenge for compact 6T SRAM bitcells with minimum-size transistors. Careful co-optimization between technology and design of memory-assist circuits is required in order to deliver dense, low-power memory operation at low voltages. In this paper, we present an 84Mb SRAM array design with wide-voltage-range operation in a 14nm logic technology featuring 2nd-generation FinFET transistors.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"397 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The growth of battery-powered mobile and wearable devices has increased the importance of low-power operation and cost in system-on-a-chip (SoC) design. Supply-voltage scaling is the predominant approach to active power reduction for SoC design, including voltage scaling for on-die memory given increasing levels of memory integration. SRAM can limit the minimum operating voltage (VMIN) of a design, often leading to the introduction of separate voltage supplies for on-die memory. Additional supplies increase platform cost, and operating memory at higher voltage leads to increased power consumption. The introduction of trigate devices at the 22nm technology node delivered superior short channel effects and subthreshold slope relative to existing bulk planar device technology enabling reduction in threshold voltage within a fixed leakage constraint. Lower transistor Vth, improvements to random device variability, and assist circuits to overcome device-size quantization enabled a >150mV reduction in SRAM VMIN [1]. At the 14nm technology node, FinFET device-size quantization remains a challenge for compact 6T SRAM bitcells with minimum-size transistors. Careful co-optimization between technology and design of memory-assist circuits is required in order to deliver dense, low-power memory operation at low voltages. In this paper, we present an 84Mb SRAM array design with wide-voltage-range operation in a 14nm logic technology featuring 2nd-generation FinFET transistors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
17.1 A 0.6V 1.5GHz 84Mb SRAM设计,采用14nm FinFET CMOS技术
电池供电的移动和可穿戴设备的增长增加了低功耗运行和低成本在片上系统(SoC)设计中的重要性。电源电压缩放是SoC设计中降低有功功率的主要方法,包括在存储器集成水平不断提高的情况下对片上存储器进行电压缩放。SRAM可以限制设计的最小工作电压(VMIN),通常导致为片上存储器引入单独的电压电源。额外的电源增加了平台成本,并且在更高电压下的操作存储器导致功耗增加。在22nm技术节点上引入三角器件,相对于现有的体平面器件技术,提供了优越的短通道效果和亚阈值斜率,从而可以在固定的泄漏约束下降低阈值电压。更低的晶体管Vth、对随机器件可变性的改进以及辅助电路克服器件尺寸量化,使SRAM VMIN降低了>150mV[1]。在14nm技术节点,FinFET器件尺寸量化仍然是具有最小尺寸晶体管的紧凑6T SRAM位单元的挑战。为了在低电压下提供密集、低功耗的存储器操作,需要在技术和存储器辅助电路的设计之间进行仔细的协同优化。在本文中,我们提出了一种采用第二代FinFET晶体管的14nm逻辑技术,具有宽电压范围工作的84Mb SRAM阵列设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1