Optimization of best polarity searching for mixed polarity reed-muller logic circuit

Limin Xiao, Zhenxue He, Li Ruan, Rong Zhang, Tongsheng Xia, Xiang Wang
{"title":"Optimization of best polarity searching for mixed polarity reed-muller logic circuit","authors":"Limin Xiao, Zhenxue He, Li Ruan, Rong Zhang, Tongsheng Xia, Xiang Wang","doi":"10.1109/SOCC.2015.7406962","DOIUrl":null,"url":null,"abstract":"At present, although genetic algorithm (GA) is widely used in best polarity searching of MPRM logic circuit, there are few literatures pay attention to the polarity conversion sequence of the polarity set waiting for evaluation. An improved best polarity searching approach (IBPSA) based on GA is presented to optimize the polarity conversion sequence of polarity set and speed up the best polarity searching of MPRM logic circuits. In addition, we present an improved nearest neighbor (INN) to obtain the best polarity conversion sequence of the polarity set waiting for evaluation in each generation of GA and apply elitism strategy to IBPSA to guarantee its global convergence. Our proposed IBPSA is implemented in C and a comparative analysis has been presented for MCNC benchmark circuits. The experimental results show that the IBPSA can greatly reduce the time of best polarity searching of MPRM logic circuits compared to the approaches neglecting polarity conversion sequence.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

At present, although genetic algorithm (GA) is widely used in best polarity searching of MPRM logic circuit, there are few literatures pay attention to the polarity conversion sequence of the polarity set waiting for evaluation. An improved best polarity searching approach (IBPSA) based on GA is presented to optimize the polarity conversion sequence of polarity set and speed up the best polarity searching of MPRM logic circuits. In addition, we present an improved nearest neighbor (INN) to obtain the best polarity conversion sequence of the polarity set waiting for evaluation in each generation of GA and apply elitism strategy to IBPSA to guarantee its global convergence. Our proposed IBPSA is implemented in C and a comparative analysis has been presented for MCNC benchmark circuits. The experimental results show that the IBPSA can greatly reduce the time of best polarity searching of MPRM logic circuits compared to the approaches neglecting polarity conversion sequence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合极性reed-muller逻辑电路的最佳极性搜索优化
目前,虽然遗传算法被广泛应用于MPRM逻辑电路的最佳极性搜索,但很少有文献关注待评估极性集的极性转换顺序。提出了一种改进的基于遗传算法的最佳极性搜索方法(IBPSA),以优化极性集的极性转换顺序,加快MPRM逻辑电路的最佳极性搜索速度。此外,我们提出了一种改进的最近邻算法(INN)来获得每一代遗传算法中等待评估的极性集的最佳极性转换序列,并将精英化策略应用于IBPSA以保证其全局收敛。我们提出的IBPSA在C语言中实现,并对MCNC基准电路进行了比较分析。实验结果表明,与忽略极性转换顺序的方法相比,IBPSA可以大大缩短MPRM逻辑电路的最佳极性搜索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Per-flow state management technique for high-speed networks A 5-b 1-GS/s 2.7-mW binary-search ADC in 90nm digital CMOS Low-latency power-efficient adaptive router design for network-on-chip A multi-level collaboration low-power design based on embedded system A high speed and low power content-addressable memory(CAM) using pipelined scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1