Conduction and Breakdown Mechanisms in Low-k Spacer and Nitride Spacer Dielectric Stacks in Middle of Line Interconnects

Chen Wu, A. Chasin, S. Demuynck, N. Horiguchi, K. Croes
{"title":"Conduction and Breakdown Mechanisms in Low-k Spacer and Nitride Spacer Dielectric Stacks in Middle of Line Interconnects","authors":"Chen Wu, A. Chasin, S. Demuynck, N. Horiguchi, K. Croes","doi":"10.1109/IRPS45951.2020.9128328","DOIUrl":null,"url":null,"abstract":"To achieve robust middle of line interconnects in advanced CMOS technology, electrical reliability of the dielectric stacks consisting of low-k spacer and nitride spacer dielectrics between gate metal and local interconnect metal is critical. To mimic this dielectric system, this work focuses on the stacks having SiN on top of SiO2 with the total thickness below 15nm. The electrical conduction is proven to be determined by the electron injection interface. Additional defects are found in the SiN layer close to the SiO2 interface as the result of SiN deposition on SiO2. These defects assist electron transport when the electrons are injected from the SiN side. In the time dependent dielectric breakdown assessment, the Weibull slope, β, behaves differently under positively and negatively biased stresses where +β depends on both SiO2 and SiN thicknesses, but -β is mainly dependent on the SiO2 thickness and is only weakly dependent on the SiN thickness. The field acceleration factor, +m and -m, show similar relations versus the equivalent SiN thickness. Due to the much higher electric field distributed in the low-k layer in dielectric stacks, the performance of low-k spacer layer is proven to be crucial for the stack reliability.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To achieve robust middle of line interconnects in advanced CMOS technology, electrical reliability of the dielectric stacks consisting of low-k spacer and nitride spacer dielectrics between gate metal and local interconnect metal is critical. To mimic this dielectric system, this work focuses on the stacks having SiN on top of SiO2 with the total thickness below 15nm. The electrical conduction is proven to be determined by the electron injection interface. Additional defects are found in the SiN layer close to the SiO2 interface as the result of SiN deposition on SiO2. These defects assist electron transport when the electrons are injected from the SiN side. In the time dependent dielectric breakdown assessment, the Weibull slope, β, behaves differently under positively and negatively biased stresses where +β depends on both SiO2 and SiN thicknesses, but -β is mainly dependent on the SiO2 thickness and is only weakly dependent on the SiN thickness. The field acceleration factor, +m and -m, show similar relations versus the equivalent SiN thickness. Due to the much higher electric field distributed in the low-k layer in dielectric stacks, the performance of low-k spacer layer is proven to be crucial for the stack reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中线互连中低k间隔层和氮化间隔层介电堆的传导和击穿机理
为了在先进的CMOS技术中实现稳健的中线互连,在栅极金属和局部互连金属之间由低k间隔和氮化间隔介质组成的介电堆的电气可靠性至关重要。为了模拟这种介电系统,本研究重点研究了总厚度低于15nm的SiO2上有SiN的堆叠。电导率是由电子注入界面决定的。在靠近SiO2界面的SiN层中发现了额外的缺陷,这是由于SiN沉积在SiO2上的结果。当电子从SiN侧注入时,这些缺陷有助于电子传递。在随时间变化的介质击穿评估中,威布尔斜率β在正偏应力和负偏应力下表现不同,其中+β与SiO2和SiN厚度都有关,而-β主要与SiO2厚度有关,与SiN厚度的关系较弱。场加速度因子+m和-m与等效SiN厚度的关系相似。由于介电堆叠中低k层的电场分布要大得多,因此低k间隔层的性能对堆叠的可靠性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1