{"title":"Impact of process variation phenomena on performance and quality assessment","authors":"G. Sery","doi":"10.1109/ICICDT.2004.1309897","DOIUrl":null,"url":null,"abstract":"Summary form only given. Logic product density and performance trends have continued to follow the course predicted by Moore's Law. To support the trends in the future and build logic products approaching one billion or more transistors before the end of the decade, several challenges must be met. These challenges include: 1) maintaining transistor/interconnect feature scaling, 2) the increasing power density dilemma, 3) increasing relative difficulty of 2-D feature resolution and general critical dimension control, 4) identifying cost effective solutions to increasing process and design database complexity, and 5), improving general performance and quality predictability in the face of the growing control, complexity and predictability issues. The trend in transistor scaling can be maintained while addressing the power density issue with new transistor structures, design approaches, and product architectures (e.g. high-k, metal gate, etc.). Items 3 to 5 are the focus of this work and are also strongly inter-related. The general 2-D patterning and resolution control problems will require several solution approaches both through design and technology e.g. reduce design degrees of freedom, use of simpler arrayed structures, improved uniformity, improved tools, etc. The data base complexity/cost problem will require solutions likely to involve use of improved data structure, improved use of hierarchy, and improved software and hardware solutions. Performance assessment, predictability and quality assessment will benefit from solutions to the control and complexity issues noted above. In addition, new design techniques/tools as well as improved process characterization models and methods can address the general performance/quality assessment challenge.","PeriodicalId":158994,"journal":{"name":"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2004.1309897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary form only given. Logic product density and performance trends have continued to follow the course predicted by Moore's Law. To support the trends in the future and build logic products approaching one billion or more transistors before the end of the decade, several challenges must be met. These challenges include: 1) maintaining transistor/interconnect feature scaling, 2) the increasing power density dilemma, 3) increasing relative difficulty of 2-D feature resolution and general critical dimension control, 4) identifying cost effective solutions to increasing process and design database complexity, and 5), improving general performance and quality predictability in the face of the growing control, complexity and predictability issues. The trend in transistor scaling can be maintained while addressing the power density issue with new transistor structures, design approaches, and product architectures (e.g. high-k, metal gate, etc.). Items 3 to 5 are the focus of this work and are also strongly inter-related. The general 2-D patterning and resolution control problems will require several solution approaches both through design and technology e.g. reduce design degrees of freedom, use of simpler arrayed structures, improved uniformity, improved tools, etc. The data base complexity/cost problem will require solutions likely to involve use of improved data structure, improved use of hierarchy, and improved software and hardware solutions. Performance assessment, predictability and quality assessment will benefit from solutions to the control and complexity issues noted above. In addition, new design techniques/tools as well as improved process characterization models and methods can address the general performance/quality assessment challenge.