R.B. Hulfachor, K.W. Kim, M. Littlejohn, C. Osburn
{"title":"A Monte Carlo study of drain and channel engineering effects on hot electron injection and induced device degradation in 0.1 /spl mu/m n-MOSFETs","authors":"R.B. Hulfachor, K.W. Kim, M. Littlejohn, C. Osburn","doi":"10.1109/DRC.1995.496229","DOIUrl":null,"url":null,"abstract":"To investigate hot carrier phenomena in 0.1 /spl mu/m n-MOSFETs under low-voltage conditions, we employ a comprehensive Monte Carlo simulator to compare hot electron injection into the oxide for a variety of drain and channel design strategies. Pertinent features of the Monte Carlo simulator include: (1) electron-electron scattering, which is significant in producing the high energy tail in the electron energy distribution; (2) an enhanced particle statistics algorithm to provide detail in the high energy tail; and (3) a coupled two-dimensional numerical solution to Poisson's equation that is rapidly recalculated every 0.1 fs to provide a self-consistent, dynamic electric field distribution. In addition, we examine relative device reliability in the variety of 0.1 /spl mu/m designs by first combining hot electron injection distributions provided by Monte Carlo simulations with an empirical model to generate interface state distributions and next incorporating these interface states into SPISCES to calculate induced changes in device characteristics.","PeriodicalId":326645,"journal":{"name":"1995 53rd Annual Device Research Conference Digest","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 53rd Annual Device Research Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1995.496229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To investigate hot carrier phenomena in 0.1 /spl mu/m n-MOSFETs under low-voltage conditions, we employ a comprehensive Monte Carlo simulator to compare hot electron injection into the oxide for a variety of drain and channel design strategies. Pertinent features of the Monte Carlo simulator include: (1) electron-electron scattering, which is significant in producing the high energy tail in the electron energy distribution; (2) an enhanced particle statistics algorithm to provide detail in the high energy tail; and (3) a coupled two-dimensional numerical solution to Poisson's equation that is rapidly recalculated every 0.1 fs to provide a self-consistent, dynamic electric field distribution. In addition, we examine relative device reliability in the variety of 0.1 /spl mu/m designs by first combining hot electron injection distributions provided by Monte Carlo simulations with an empirical model to generate interface state distributions and next incorporating these interface states into SPISCES to calculate induced changes in device characteristics.