Comparison of fuzzy clustering algorithms for classification

R. Almeida, J. Sousa
{"title":"Comparison of fuzzy clustering algorithms for classification","authors":"R. Almeida, J. Sousa","doi":"10.1109/ISEFS.2006.251138","DOIUrl":null,"url":null,"abstract":"The identification of fuzzy models for classification is a very complex task. Often, real world databases have a large number of features and the most relevant ones must be chosen. Recently, a new automatic feature selection for classification problems was proposed to construct compact fuzzy classification models. This technique used the classical fuzzy c-means algorithm. However, other fuzzy clustering algorithms, such as possibilistic c-means, fuzzy possibilistic c-means or possibilistic fuzzy c-means can be used to cluster the data. An open topic of research is what clustering algorithms can be used to derive fuzzy models for classification. This paper addresses this topic, by comparing fuzzy clustering algorithms in terms of computational efficiency and accuracy in classification problems. The algorithms were tested in well-known data sets: iris plant, wine, hepatitis, breast cancer and in a difficult real-world problem: the prediction of bankruptcy","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

The identification of fuzzy models for classification is a very complex task. Often, real world databases have a large number of features and the most relevant ones must be chosen. Recently, a new automatic feature selection for classification problems was proposed to construct compact fuzzy classification models. This technique used the classical fuzzy c-means algorithm. However, other fuzzy clustering algorithms, such as possibilistic c-means, fuzzy possibilistic c-means or possibilistic fuzzy c-means can be used to cluster the data. An open topic of research is what clustering algorithms can be used to derive fuzzy models for classification. This paper addresses this topic, by comparing fuzzy clustering algorithms in terms of computational efficiency and accuracy in classification problems. The algorithms were tested in well-known data sets: iris plant, wine, hepatitis, breast cancer and in a difficult real-world problem: the prediction of bankruptcy
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊聚类分类算法的比较
模糊模型的识别是一项非常复杂的任务。通常,现实世界的数据库有大量的特性,必须选择最相关的特性。近年来,针对分类问题提出了一种新的自动特征选择方法来构建紧凑模糊分类模型。该技术使用了经典的模糊c均值算法。然而,其他的模糊聚类算法,如可能性c-means、模糊可能性c-means或可能性模糊c-means也可以用于聚类数据。一个开放的研究课题是什么聚类算法可以用来导出模糊模型的分类。本文通过比较模糊聚类算法在分类问题中的计算效率和准确性来解决这个问题。这些算法在众所周知的数据集中进行了测试:鸢尾植物、葡萄酒、肝炎、乳腺癌,以及一个困难的现实问题:破产预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1