S parameter-based experimental modeling of high Q MCM inductor with exponential gradient learning algorithm

Jinsong Zhao, W. Dai, R. Frye, K. Tai
{"title":"S parameter-based experimental modeling of high Q MCM inductor with exponential gradient learning algorithm","authors":"Jinsong Zhao, W. Dai, R. Frye, K. Tai","doi":"10.1109/MCMC.1997.569353","DOIUrl":null,"url":null,"abstract":"Lumped inductors are very desirable passive components in wireless/RF circuits integrated on MCM substrate. This paper models the inductor from on-wafer high frequency measurement by utilizing the S parameter formulation and exponential gradient method. The S parameter formulation enables us to understand the phase shifting effects within the model while the exponential gradient learning algorithm provides us with a more robust and better fitting technique than the gradient descent algorithm. Both the magnitudes and phases of all S parameters fit well for all the inductors we constructed. It is shown that the phase shifting of the distributed effects should not be neglected even in MCM-D technology. The resulting experimental model provides measurement-verified solid ground for circuit design and numerical characterization.","PeriodicalId":412444,"journal":{"name":"Proceedings 1997 IEEE Multi-Chip Module Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 IEEE Multi-Chip Module Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCMC.1997.569353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Lumped inductors are very desirable passive components in wireless/RF circuits integrated on MCM substrate. This paper models the inductor from on-wafer high frequency measurement by utilizing the S parameter formulation and exponential gradient method. The S parameter formulation enables us to understand the phase shifting effects within the model while the exponential gradient learning algorithm provides us with a more robust and better fitting technique than the gradient descent algorithm. Both the magnitudes and phases of all S parameters fit well for all the inductors we constructed. It is shown that the phase shifting of the distributed effects should not be neglected even in MCM-D technology. The resulting experimental model provides measurement-verified solid ground for circuit design and numerical characterization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于S参数的高Q MCM电感的指数梯度学习实验建模
集总电感器是集成在MCM基板上的无线/射频电路中非常理想的无源元件。本文利用S参数公式和指数梯度法对晶片上高频测量的电感进行建模。S参数公式使我们能够理解模型内的相移效应,而指数梯度学习算法为我们提供了比梯度下降算法更鲁棒和更好的拟合技术。所有S参数的幅值和相位都适合于我们所构造的所有电感。结果表明,即使在MCM-D技术中,分布效应的相移也不容忽视。所得到的实验模型为电路设计和数值表征提供了测量验证的坚实基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Area I/O flip-chip packaging to minimize interconnect length Low cost test of MCMs using testable die carriers Multiscale thermal design of MCMs with high resolution unstructured adaptive simulation tools Modeling the frequency-dependent parameters of high-speed interconnects: a neural network approach High speed I/O buffer design for MCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1