An Adaptive Evolutionary Algorithm for Production Planning in Wood Furniture Industry

J. C. Vidal, M. Mucientes, Alberto Bugarín-Diz, M. Lama
{"title":"An Adaptive Evolutionary Algorithm for Production Planning in Wood Furniture Industry","authors":"J. C. Vidal, M. Mucientes, Alberto Bugarín-Diz, M. Lama","doi":"10.1109/ISEFS.2006.251179","DOIUrl":null,"url":null,"abstract":"This paper describes an adaptive evolutionary approach to the problem of the production planning task in the wood furniture industry. The objective is to schedule new incoming orders and to regenerate the scheduling for already existing orders when necessary. Complexity and uncertainty of this task promotes the use of an hybrid solution that combines evolutionary algorithms (EAs) and fuzzy sets. On one hand, EAs allow an efficient and flexible use of large number of parameters involved in the scheduling task and to reduce its computation time. On the other hand, fuzzy sets improve the confidence in the evaluation of the solutions when uncertain knowledge is used. This evolutionary approach to the production planning task is a part of a knowledge-based system that manages the product design life cycle of wood-based furniture and is being currently implemented on a wood furniture industry","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an adaptive evolutionary approach to the problem of the production planning task in the wood furniture industry. The objective is to schedule new incoming orders and to regenerate the scheduling for already existing orders when necessary. Complexity and uncertainty of this task promotes the use of an hybrid solution that combines evolutionary algorithms (EAs) and fuzzy sets. On one hand, EAs allow an efficient and flexible use of large number of parameters involved in the scheduling task and to reduce its computation time. On the other hand, fuzzy sets improve the confidence in the evaluation of the solutions when uncertain knowledge is used. This evolutionary approach to the production planning task is a part of a knowledge-based system that manages the product design life cycle of wood-based furniture and is being currently implemented on a wood furniture industry
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木质家具行业生产计划的自适应进化算法
本文描述了一种自适应进化方法来解决木制家具行业的生产计划问题。目标是安排新的传入订单,并在必要时为已经存在的订单重新制定计划。该任务的复杂性和不确定性促使人们使用进化算法和模糊集相结合的混合解决方案。一方面,ea允许高效和灵活地使用调度任务中涉及的大量参数,并减少其计算时间。另一方面,模糊集提高了在不确定知识下解的评价置信度。这种生产计划任务的进化方法是管理木制家具产品设计生命周期的基于知识的系统的一部分,目前正在木制家具行业中实施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1