{"title":"Design and estimation of state-charging applied for lithium-ion battery based on Matlab-Simulink","authors":"Jarernporn Poonsuk, S. Pongyupinpanich","doi":"10.1109/MITICON.2016.8025222","DOIUrl":null,"url":null,"abstract":"For green technology applications, the lithium-ion battery is widely adopted as energy storage system due to high power and high energy density. However, there is a drawback on the storage system on charging interval time, particularly on electric vehicle applications. To accelerate, the multi-state current technique becomes a solution. In this paper, the state-charging of the lithium ion battery modeled by Matlab/Simulink is discussed. The state-of-charge (SOC) is measured and applied to evaluate the battery's charge/discharge characteristic. The multiple charging states applied for filling the battery capacity are evaluated in order to achieve high efficiency. In addition, the configurable three-state current design manipulated by a 8-bit microcontroller is introduced with a constant voltage at 20V and variable current from 5A to 60A. The investigation results are illustrated that, operating on Lithium-ion Ferro battery 12V 30Ah, the interval time of fill-up is reduced approximately 30% with working temperature 35° C.","PeriodicalId":127868,"journal":{"name":"2016 Management and Innovation Technology International Conference (MITicon)","volume":"12 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Management and Innovation Technology International Conference (MITicon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MITICON.2016.8025222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
For green technology applications, the lithium-ion battery is widely adopted as energy storage system due to high power and high energy density. However, there is a drawback on the storage system on charging interval time, particularly on electric vehicle applications. To accelerate, the multi-state current technique becomes a solution. In this paper, the state-charging of the lithium ion battery modeled by Matlab/Simulink is discussed. The state-of-charge (SOC) is measured and applied to evaluate the battery's charge/discharge characteristic. The multiple charging states applied for filling the battery capacity are evaluated in order to achieve high efficiency. In addition, the configurable three-state current design manipulated by a 8-bit microcontroller is introduced with a constant voltage at 20V and variable current from 5A to 60A. The investigation results are illustrated that, operating on Lithium-ion Ferro battery 12V 30Ah, the interval time of fill-up is reduced approximately 30% with working temperature 35° C.