{"title":"Effect of spin torque oscillator cone angle on recording performance in microwave assisted magnetic recording","authors":"S. Greaves, R. Itagaki, Y. Kanai","doi":"10.1109/TMRC49521.2020.9366716","DOIUrl":null,"url":null,"abstract":"Microwave assisted magnetic recording (MAMR) has the potential to realise large gains in areal recording density. The key component enabling this gain is the spin torque oscillator (STO), which is typically located in the gap between the main pole and the trailing shield of the write head.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave assisted magnetic recording (MAMR) has the potential to realise large gains in areal recording density. The key component enabling this gain is the spin torque oscillator (STO), which is typically located in the gap between the main pole and the trailing shield of the write head.