A Study on Neural Network Detector in Smr System

M. Nishikawa, Y. Nakamura, Y. Kanai, H. Osawa, Y. Okamoto
{"title":"A Study on Neural Network Detector in Smr System","authors":"M. Nishikawa, Y. Nakamura, Y. Kanai, H. Osawa, Y. Okamoto","doi":"10.1109/TMRC49521.2020.9366710","DOIUrl":null,"url":null,"abstract":"We have previously proposed the waveform equalization using a two-dimensional finite impulse response (TD-FIR) filter [1], [2] and the inter-track interference (ITI) canceller [3] as a signal processing method for shingled magnetic recording (SMR) [4]. In this study, we propose a neural network detector which directly outputs log-likelihood ratio (LLR) as the reliability for the recording sequence from the reproduced waveform and evaluate the channel error rate (CER) performance of the neural network detector in iterative decoding system by computer simulation.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have previously proposed the waveform equalization using a two-dimensional finite impulse response (TD-FIR) filter [1], [2] and the inter-track interference (ITI) canceller [3] as a signal processing method for shingled magnetic recording (SMR) [4]. In this study, we propose a neural network detector which directly outputs log-likelihood ratio (LLR) as the reliability for the recording sequence from the reproduced waveform and evaluate the channel error rate (CER) performance of the neural network detector in iterative decoding system by computer simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smr系统中神经网络检测器的研究
我们之前已经提出使用二维有限脉冲响应(TD-FIR)滤波器[1]、[2]和轨间干扰(ITI)消除器[3]进行波形均衡,作为铺瓦式磁记录(SMR)的信号处理方法[4]。在本研究中,我们提出了一种神经网络检测器,它直接从再现波形中输出对数似然比(LLR)作为记录序列的可靠性,并通过计算机仿真评估了神经网络检测器在迭代译码系统中的信道误码率(CER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Neural Network Media Noise Predictor Turbo-detection System for One and Two Dimensional High-Density Magnetic Recording Effect of spin torque oscillator cone angle on recording performance in microwave assisted magnetic recording A Study on Neural Network Detector in Smr System Simulating Resonant Magnetization Reversals in Nanomagnets Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1