Simulating Resonant Magnetization Reversals in Nanomagnets

Jinho Lim, Zhaohui Zhang, A. Garg, J. Ketterson
{"title":"Simulating Resonant Magnetization Reversals in Nanomagnets","authors":"Jinho Lim, Zhaohui Zhang, A. Garg, J. Ketterson","doi":"10.1109/TMRC49521.2020.9366718","DOIUrl":null,"url":null,"abstract":"Magnetization reversals in magnetic recording media are largely carried out by brute force: a field is applied opposite to the existing magnetization direction of some bit that has sufficient magnitude to nucleate a seed that then grows into an oppositely magnetized bit. The fields used are generally quite large, $\\sim 10$ kG, requiring elaborate magnetic circuitry to keep the fields localized so they do not spill over onto neighboring bits. This situation is to be contrasted with the resonant magnetization reversals performed in NMR spin echo experiments in which r.f. fields of a few Gauss coherently reverse the magnetization in the presence of static fields of a few kG, by applying a so-called Pi pulse; two such pulses restores the original alignment.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetization reversals in magnetic recording media are largely carried out by brute force: a field is applied opposite to the existing magnetization direction of some bit that has sufficient magnitude to nucleate a seed that then grows into an oppositely magnetized bit. The fields used are generally quite large, $\sim 10$ kG, requiring elaborate magnetic circuitry to keep the fields localized so they do not spill over onto neighboring bits. This situation is to be contrasted with the resonant magnetization reversals performed in NMR spin echo experiments in which r.f. fields of a few Gauss coherently reverse the magnetization in the presence of static fields of a few kG, by applying a so-called Pi pulse; two such pulses restores the original alignment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米磁体中共振磁化反转的模拟
磁性记录介质中的磁化反转主要是通过蛮力来实现的:在某个比特的现有磁化方向相反的方向上施加一个磁场,这个磁场的大小足以使种子形成核,然后长成一个相反磁化的比特。使用的磁场通常相当大,$ $ 10$ kG,需要精心设计的磁路来保持磁场的局部化,这样它们就不会溢出到邻近的比特上。这种情况与核磁共振自旋回波实验中进行的共振磁化逆转形成对比,在核磁共振自旋回波实验中,通过施加所谓的Pi脉冲,几高斯的射频场在几千克的静态场存在下相干地逆转磁化;两个这样的脉冲恢复了原始的排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Neural Network Media Noise Predictor Turbo-detection System for One and Two Dimensional High-Density Magnetic Recording Effect of spin torque oscillator cone angle on recording performance in microwave assisted magnetic recording A Study on Neural Network Detector in Smr System Simulating Resonant Magnetization Reversals in Nanomagnets Review of STT-MRAM circuit design strategies, and a 40-nm 1T-1MTJ 128Mb STT-MRAM design practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1