Integrated laser Doppler blood flowing combining optical contact force

Hirofumi Nogami, Kosuke Komatsutani, T. Hirata, R. Sawada
{"title":"Integrated laser Doppler blood flowing combining optical contact force","authors":"Hirofumi Nogami, Kosuke Komatsutani, T. Hirata, R. Sawada","doi":"10.23919/ICEP.2019.8733508","DOIUrl":null,"url":null,"abstract":"Laser Doppler blood flowmeter (LDF) is a non-invasive method for measuring micro circulation, and has been developed since 1977. It is necessary to control contact force between a LDF and measurement part (skin surface), in order to obtain accurate blood flow. We suggest new multifunctional sensor modules which can measure both blood flow and contact force. A sensor module has a multi-layer ceramic chip with vertical cavity surface emitting laser (VCSEL), photo diodes, and op-amp circuits, and a hollow shell with a mirror and a lug. Some of incident light penetrates into a finger, and the scattering light, which have biological signal (blood flow) are detected by one photodiode. On the other hand, a photodiode can detect reflecting light from a mirror, which is displaced by a contact force. In this paper, we fabricate multifunctional sensor module and attempt to simultaneously measure the blood flow and contact force.","PeriodicalId":213025,"journal":{"name":"2019 International Conference on Electronics Packaging (ICEP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP.2019.8733508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laser Doppler blood flowmeter (LDF) is a non-invasive method for measuring micro circulation, and has been developed since 1977. It is necessary to control contact force between a LDF and measurement part (skin surface), in order to obtain accurate blood flow. We suggest new multifunctional sensor modules which can measure both blood flow and contact force. A sensor module has a multi-layer ceramic chip with vertical cavity surface emitting laser (VCSEL), photo diodes, and op-amp circuits, and a hollow shell with a mirror and a lug. Some of incident light penetrates into a finger, and the scattering light, which have biological signal (blood flow) are detected by one photodiode. On the other hand, a photodiode can detect reflecting light from a mirror, which is displaced by a contact force. In this paper, we fabricate multifunctional sensor module and attempt to simultaneously measure the blood flow and contact force.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成激光多普勒血流结合光学接触力
激光多普勒血流仪(LDF)是一种无创测量微循环的方法,自1977年发展至今。为了获得准确的血流,有必要控制LDF与测量部件(皮肤表面)之间的接触力。我们提出了一种新的多功能传感器模块,可以同时测量血流量和接触力。传感器模块具有多层陶瓷芯片,带有垂直腔面发射激光器(VCSEL)、光电二极管和运算放大器电路,以及带有镜面和耳片的中空外壳。一些入射光穿透手指,散射光带有生物信号(血液流动),被一个光电二极管检测到。另一方面,光电二极管可以探测到镜子反射的光,因为镜子受到接触力的位移。在本文中,我们制作了多功能传感器模块,并尝试同时测量血流和接触力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Package to System Thermal Characterization and Design of High Power 2.5-D IC Warpage and Simulation Analysis of Panel Level FO-WLCSP Using Equivalent CTE Room-temperature printing of CNTs-based flexible TFTs with high performance Optimization of Ag-Ag Direct Bonding for Wafer-Level Power Electronics Packaging via Design of Experiments A novel TLP bonding based on sub-micron Ga particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1