Experiment and simulation of power supply switching current dependency on on-chip capacitance

K. Hoshino, R. Satomi, T. Sudo, H. Okano, M. Ishikawa, H. Shibayama, H. Aoyagi, H. Kushibe, K. Yamagishi
{"title":"Experiment and simulation of power supply switching current dependency on on-chip capacitance","authors":"K. Hoshino, R. Satomi, T. Sudo, H. Okano, M. Ishikawa, H. Shibayama, H. Aoyagi, H. Kushibe, K. Yamagishi","doi":"10.1109/EDAPS.2009.5403989","DOIUrl":null,"url":null,"abstract":"Power distribution network (PDN) of LSI has become one of important design parameters to reduce simultaneous switching noise for core circuits as well as I/O circuits. Power distribution network of LSI generally consists of meshed power and ground conductors and on-chip decoupling capacitors. For mobile communication and automotive applications, switching current of high-performance CMOS LSIs must be controlled to be low as possible in order to suppress associated electromagnetic interference (EMI). Therefore, on-chip decoupling capacitors must be properly arranged on a chip to optimize the amount of capacitor and to minimize the occupied area by on-chip capacitor. In this paper, a CMOS test chip has been developed which has several test element groups (TEGs) inside. MOS capacitor cells were distributed in each TEG in a different density. Then, an evaluation board was designed to measure the power supply switching current for the each TEG. Furthermore, the power supply switching current was simulated by using a commercial available EDA tool. Reduction level of the switching current was measured and simulated as a function of the value of on-chip decoupling capacitor. Based on both experimental and simulation results, it has been probed that proper density of decoupling capacitor on a chip has been well estimated.","PeriodicalId":370741,"journal":{"name":"2009 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2009.5403989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Power distribution network (PDN) of LSI has become one of important design parameters to reduce simultaneous switching noise for core circuits as well as I/O circuits. Power distribution network of LSI generally consists of meshed power and ground conductors and on-chip decoupling capacitors. For mobile communication and automotive applications, switching current of high-performance CMOS LSIs must be controlled to be low as possible in order to suppress associated electromagnetic interference (EMI). Therefore, on-chip decoupling capacitors must be properly arranged on a chip to optimize the amount of capacitor and to minimize the occupied area by on-chip capacitor. In this paper, a CMOS test chip has been developed which has several test element groups (TEGs) inside. MOS capacitor cells were distributed in each TEG in a different density. Then, an evaluation board was designed to measure the power supply switching current for the each TEG. Furthermore, the power supply switching current was simulated by using a commercial available EDA tool. Reduction level of the switching current was measured and simulated as a function of the value of on-chip decoupling capacitor. Based on both experimental and simulation results, it has been probed that proper density of decoupling capacitor on a chip has been well estimated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电源开关电流随片上电容变化的实验与仿真
LSI的配电网络(PDN)已成为降低核心电路和I/O电路同时开关噪声的重要设计参数之一。大规模集成电路的配电网络一般由网状的电源和接地导体以及片上去耦电容器组成。对于移动通信和汽车应用,必须将高性能CMOS lsi的开关电流控制在尽可能低的水平,以抑制相关的电磁干扰(EMI)。因此,必须在芯片上合理布置片上去耦电容器,以优化电容器的数量,使片上电容器占用的面积最小。本文研制了一种由多个测试元件组(teg)组成的CMOS测试芯片。在每个TEG中以不同的密度分布MOS电容器电池。然后,设计了一个评估板来测量每个TEG的电源开关电流。此外,利用商用EDA工具对电源开关电流进行了仿真。测量并模拟了开关电流减小水平随片上去耦电容值的变化。基于实验和仿真结果,探讨了合理估计芯片上去耦电容的密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new wide stopband microstrip bandpass filter with miniaturized interdigital capacitor resonator Precise analysis and modeling of far-end crosstalk and far-end crosstalk saturation using mode analysis in coupled microstrip lines Simulation of human head exposed to handset using hybrid NFM/MoM techniques Novel I/O-bump design and optimization for chip-package codesign Analysis of frequency-dependent lossy transmission lines driven by CMOS gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1