Statistical analysis and parametric yield estimation of standard 6T SRAM cell for different capacities

Anil Kumar Gundu, M. Hashmi, Ramkesh Sharma, Naushad Ansari
{"title":"Statistical analysis and parametric yield estimation of standard 6T SRAM cell for different capacities","authors":"Anil Kumar Gundu, M. Hashmi, Ramkesh Sharma, Naushad Ansari","doi":"10.1109/SOCC.2015.7406974","DOIUrl":null,"url":null,"abstract":"In advanced CMOS technologies large-scale integration has enabled larger embedded memory capacity in SoCs and it has also necessitated the Static Random Access Memory (SRAM) bitcell qualification requirement of the order of 0.1ppb. This paper presents a qualitative statistical analysis of a 6T standard SRAM cell in read cycle with respect to Static Noise Margin (SNM) due to process parameter fluctuation. The Yield (Y) of SRAM is predicted for different capacities of SRAM array by modeling success/failure boundary through mathematical modeling for one cell. With this frame work, it is demonstrated that the yield can be accurately predicted by increasing the order of the polynomial. The obtained results show that for the first order approximation, the failure probability of a single cell is 2.36×10-6 whereas the failure probability of an SRAM can be decreased to 8.38×10-13 if the success/failure boundary is modeled with a polynomial of order 4.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In advanced CMOS technologies large-scale integration has enabled larger embedded memory capacity in SoCs and it has also necessitated the Static Random Access Memory (SRAM) bitcell qualification requirement of the order of 0.1ppb. This paper presents a qualitative statistical analysis of a 6T standard SRAM cell in read cycle with respect to Static Noise Margin (SNM) due to process parameter fluctuation. The Yield (Y) of SRAM is predicted for different capacities of SRAM array by modeling success/failure boundary through mathematical modeling for one cell. With this frame work, it is demonstrated that the yield can be accurately predicted by increasing the order of the polynomial. The obtained results show that for the first order approximation, the failure probability of a single cell is 2.36×10-6 whereas the failure probability of an SRAM can be decreased to 8.38×10-13 if the success/failure boundary is modeled with a polynomial of order 4.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标准6T SRAM电池不同容量的统计分析及参数良率估计
在先进的CMOS技术中,大规模集成使得soc中的嵌入式存储器容量更大,并且还需要静态随机存取存储器(SRAM)位元资格要求为0.1ppb。本文对6T标准SRAM单元在读取周期中由于工艺参数波动引起的静态噪声裕度(SNM)进行了定性统计分析。通过对单个单元进行数学建模,建立成功/失败边界,预测了不同容量SRAM阵列的产率(Y)。在此框架下,通过增加多项式的阶数可以准确地预测屈服。结果表明,对于一阶近似,单个单元的失效概率为2.36×10-6,而如果成功/失效边界用4阶多项式建模,则SRAM的失效概率可以降低到8.38×10-13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Per-flow state management technique for high-speed networks A 5-b 1-GS/s 2.7-mW binary-search ADC in 90nm digital CMOS Low-latency power-efficient adaptive router design for network-on-chip A multi-level collaboration low-power design based on embedded system A high speed and low power content-addressable memory(CAM) using pipelined scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1