F. L. N. Santos, M. Watanabe, William Chiappim Júnior, S. G. S. Filho, J. Martino
{"title":"Bifacial Tandem Solar Panels with MOS Cells on the Backside for Applications in Deserts","authors":"F. L. N. Santos, M. Watanabe, William Chiappim Júnior, S. G. S. Filho, J. Martino","doi":"10.1109/SBMicro.2019.8919381","DOIUrl":null,"url":null,"abstract":"This work proposes bifacial tandem solar panels with MOS cells on the backside aiming at applications in deserts. MOS solar cells were fabricated using Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p structures. The gate oxide was grown by rapid thermal processing (RTP) and the main parameters studied were extracted by means of electric characterization through IxV curves of the MOS solar cells. For the operation temperature of the MOS cell varying from 25°C to 70°C, it was shown that the loss of the conversion efficiency ($\\eta$) was at least 25% lower compared to conventional solar modules based on PN junctions and multi-crystalline-Si [9, 12]. As a result, the use of MOS solar cell on the backside of two different generations of CdS_CdTe cells with different conversion efficiencies at 25° C (15.8% and 21.0%), operating at the typical temperature of 70°C in deserts, promotes the increase of the conversion efficiency of 10.0% for CdS_CdTe1 (15.8%) and 6.0% for CdS_CdTe2 (21.0%).","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work proposes bifacial tandem solar panels with MOS cells on the backside aiming at applications in deserts. MOS solar cells were fabricated using Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p structures. The gate oxide was grown by rapid thermal processing (RTP) and the main parameters studied were extracted by means of electric characterization through IxV curves of the MOS solar cells. For the operation temperature of the MOS cell varying from 25°C to 70°C, it was shown that the loss of the conversion efficiency ($\eta$) was at least 25% lower compared to conventional solar modules based on PN junctions and multi-crystalline-Si [9, 12]. As a result, the use of MOS solar cell on the backside of two different generations of CdS_CdTe cells with different conversion efficiencies at 25° C (15.8% and 21.0%), operating at the typical temperature of 70°C in deserts, promotes the increase of the conversion efficiency of 10.0% for CdS_CdTe1 (15.8%) and 6.0% for CdS_CdTe2 (21.0%).