Multi-Arm Payload Manipulation via Mixed Reality

Florian Kennel-Maushart, Roi Poranne, Stelian Coros
{"title":"Multi-Arm Payload Manipulation via Mixed Reality","authors":"Florian Kennel-Maushart, Roi Poranne, Stelian Coros","doi":"10.1109/icra46639.2022.9811580","DOIUrl":null,"url":null,"abstract":"Multi-Robot Systems (MRS) present many advantages over single robots, e.g. improved stability and payload capacity. Being able to operate or teleoperate these systems is therefore of high interest in industries such as construction or logistics. However, controlling the collective motion of a MRS can place a significant cognitive burden on the operator. We present a Mixed Reality (MR) control interface, which allows an operator to specify payload target poses for a MRS in real-time, while effectively keeping the system away from unfavorable configurations. To this end, we solve the inverse kinematics problem for each arm individually and leverage redundant degrees of freedom to optimize for a secondary objective. Using the manipulability index as a secondary objective in particular, allows us to significantly improve the tracking and singularity avoidance capabilities of our MRS in comparison to the unoptimized scenario. This enables more secure and intuitive teleoperation. We simulate and test our approach on different setups and over different input trajectories, and analyse the convergence properties of our method. Finally, we show that the method also works well when deployed on to a dual-arm ABB YuMi robot.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multi-Robot Systems (MRS) present many advantages over single robots, e.g. improved stability and payload capacity. Being able to operate or teleoperate these systems is therefore of high interest in industries such as construction or logistics. However, controlling the collective motion of a MRS can place a significant cognitive burden on the operator. We present a Mixed Reality (MR) control interface, which allows an operator to specify payload target poses for a MRS in real-time, while effectively keeping the system away from unfavorable configurations. To this end, we solve the inverse kinematics problem for each arm individually and leverage redundant degrees of freedom to optimize for a secondary objective. Using the manipulability index as a secondary objective in particular, allows us to significantly improve the tracking and singularity avoidance capabilities of our MRS in comparison to the unoptimized scenario. This enables more secure and intuitive teleoperation. We simulate and test our approach on different setups and over different input trajectories, and analyse the convergence properties of our method. Finally, we show that the method also works well when deployed on to a dual-arm ABB YuMi robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合现实的多臂有效载荷操纵
与单个机器人相比,多机器人系统(MRS)具有许多优点,例如提高了稳定性和有效载荷能力。因此,能够操作或远程操作这些系统在建筑或物流等行业具有很高的兴趣。然而,控制MRS的集体运动可能会给操作员带来很大的认知负担。我们提出了一个混合现实(MR)控制接口,它允许操作员实时指定MRS的有效载荷目标姿态,同时有效地使系统远离不利的配置。为此,我们分别求解了每个臂的逆运动学问题,并利用冗余自由度对次要目标进行优化。特别是使用可操控性指标作为次要目标,与未优化的情况相比,我们可以显着提高MRS的跟踪和奇点避免能力。这使得远程操作更加安全和直观。我们在不同的设置和不同的输入轨迹上模拟和测试了我们的方法,并分析了我们方法的收敛性。最后,我们证明了该方法在双臂ABB YuMi机器人上也能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1