Nonlinear Adaptive Speech Prediction using a Pipelined Recurrent Fuzzy Network

D. Stavrakoudis, J. Theocharis
{"title":"Nonlinear Adaptive Speech Prediction using a Pipelined Recurrent Fuzzy Network","authors":"D. Stavrakoudis, J. Theocharis","doi":"10.1109/ISEFS.2006.251170","DOIUrl":null,"url":null,"abstract":"In this paper, a pipelined TSK-type recurrent fuzzy network (PTRFN) is proposed for nonlinear adaptive signal prediction. The PTRFN model consists of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. The parameter learning task is accomplished using a gradient descent algorithm and the extended least squares method. The suggested predictor exhibits a series of attractive attributes, including effective spatial representation of the temporal patterns, enhanced memorizing capabilities, and low computational complexity. The nonlinear subsection of the predictor (PTRFN), followed by a linear subsection (a tapped delay-line filter) is tested on the adaptive speech prediction problem. Simulation results demonstrate that considerably better performance is obtained compared with other existing recurrent networks","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a pipelined TSK-type recurrent fuzzy network (PTRFN) is proposed for nonlinear adaptive signal prediction. The PTRFN model consists of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. The parameter learning task is accomplished using a gradient descent algorithm and the extended least squares method. The suggested predictor exhibits a series of attractive attributes, including effective spatial representation of the temporal patterns, enhanced memorizing capabilities, and low computational complexity. The nonlinear subsection of the predictor (PTRFN), followed by a linear subsection (a tapped delay-line filter) is tested on the adaptive speech prediction problem. Simulation results demonstrate that considerably better performance is obtained compared with other existing recurrent networks
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于管道递归模糊网络的非线性自适应语音预测
本文提出了一种用于非线性自适应信号预测的流水线tsk型递归模糊网络(PTRFN)。PTRFN模型由许多以级联形式相互连接的模块组成。参与模块通过带有内部动态的递归模糊神经网络实现。模块的结构从输入-输出数据依次演化。采用梯度下降算法和扩展最小二乘法完成参数学习任务。所建议的预测器显示了一系列吸引人的属性,包括有效的时间模式的空间表示、增强的记忆能力和较低的计算复杂性。对自适应语音预测问题进行了非线性预测器(PTRFN)和线性预测器(抽头延延线滤波器)的测试。仿真结果表明,与已有的递归网络相比,该网络具有较好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1