500/spl deg/C operation of a GaN/SiC heterojunction bipolar transistor

S. Chang, J. Pankove, M. Leksono, B. van Zeghbroeck
{"title":"500/spl deg/C operation of a GaN/SiC heterojunction bipolar transistor","authors":"S. Chang, J. Pankove, M. Leksono, B. van Zeghbroeck","doi":"10.1109/DRC.1995.496291","DOIUrl":null,"url":null,"abstract":"Silicon Carbide has been proposed as a preferred material for high-power, high temperature semiconductor devices, primarily because of its large energy-bandgap and high thermal conductivity. Heterojunction bipolar transistors with a GaN wide bandgap emitter and SiC base and collector region have recently been demonstrated to have very high DC current gain (>100,000) and have been operated up to 260/spl deg/C. We present the first operation of a semiconductor bipolar transistor at a temperature of 500/spl deg/C with a current gain greater than 100. The GaN/SiC n-p-n HBT's common base I-V characteristics, current gain versus emitter current curves, and Gummel plots were obtained at temperatures ranging from 25/spl deg/C to 535/spl deg/C. The I-V characteristics showed little change over this temperature range, except for an increase in leakage current with increasing temperature. Only common base characteristics were obtained due to the high gain of the devices and the leakage current between base and collector. The high temperature of operation and the large gain even at elevated temperatures indicate the extraordinary potential of these devices for high-temperature and high-power operation.","PeriodicalId":326645,"journal":{"name":"1995 53rd Annual Device Research Conference Digest","volume":"96 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 53rd Annual Device Research Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1995.496291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Silicon Carbide has been proposed as a preferred material for high-power, high temperature semiconductor devices, primarily because of its large energy-bandgap and high thermal conductivity. Heterojunction bipolar transistors with a GaN wide bandgap emitter and SiC base and collector region have recently been demonstrated to have very high DC current gain (>100,000) and have been operated up to 260/spl deg/C. We present the first operation of a semiconductor bipolar transistor at a temperature of 500/spl deg/C with a current gain greater than 100. The GaN/SiC n-p-n HBT's common base I-V characteristics, current gain versus emitter current curves, and Gummel plots were obtained at temperatures ranging from 25/spl deg/C to 535/spl deg/C. The I-V characteristics showed little change over this temperature range, except for an increase in leakage current with increasing temperature. Only common base characteristics were obtained due to the high gain of the devices and the leakage current between base and collector. The high temperature of operation and the large gain even at elevated temperatures indicate the extraordinary potential of these devices for high-temperature and high-power operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaN/SiC异质结双极晶体管的500/spl度/C工作
碳化硅已被提出作为高功率、高温半导体器件的首选材料,主要是因为它具有大的能带隙和高导热性。具有GaN宽带隙发射极和SiC基极和集电极区的异质结双极晶体管最近被证明具有非常高的直流电流增益(bbb10,000),并且工作温度高达260/spl度/C。我们提出了半导体双极晶体管在500/spl度/C温度下的第一个工作,电流增益大于100。在25 ~ 535℃的温度范围内,获得了GaN/SiC n-p-n HBT的共基极I-V特性、电流增益与发射极电流的关系曲线和Gummel图。在此温度范围内,除了泄漏电流随温度升高而增加外,I-V特性变化不大。由于器件的高增益和基极与集电极之间的漏电流,只能获得共同基极特性。高工作温度和即使在高温下的大增益表明这些器件在高温和高功率工作方面具有非凡的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intrinsic oscillations in resonant tunneling structures New interpretation of threshold voltage in polysilicon TFTs: a theoretical and experimental study New generation of organic-based thin-film transistors Monolithic integration of a 94 GHz AlGaAs/GaAs 2DEG mixer on quartz substrate by epitaxial lift-off A 140 GHz f/sub max/ InAlAs/InGaAs pulse-doped InGaAlAs quaternary collector HBT with a 20 V BVceo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1