{"title":"Theoretical Biomechanics: Design of the Associated Measurement Symmetry System","authors":"A. Dyszkiewicz, D. Hruby","doi":"10.5772/intechopen.92758","DOIUrl":null,"url":null,"abstract":"Based on the own experience of the authors and the literature, an original proposition of the device and system software based on the quotient scale was presented, where the mutual relations of parameters from several or several simultaneously working measuring devices are easily visible on a common graph in real time. The project is connected with an outline of problems of musculoskeletal system diagnostics, aiming at creating a universal, systemic parametric graph, defining in parallel-multi-parametric and quantitative manner, the patient’s initial health profile as a set of parametric symmetries (or asymmetries), having specific and separate characteristics for healthy individuals in all age groups, as well as in groups with specific disease units. The directional pattern for Authors, aiming at the systemic recognition of the causative phenomena and the consequences of motion in the form of a multi-parameter graph calibrated by a common time axis is the way of electrode location, recording and param-eterization of the ECG curve. This universal formula, defining parametrically the problems of evolutionary and involutionary norms, as well as most known pathologies, has become the foundation of cardiology, functioning worldwide over the language barrier.","PeriodicalId":256258,"journal":{"name":"Recent Advances in Biomechanics","volume":"399 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the own experience of the authors and the literature, an original proposition of the device and system software based on the quotient scale was presented, where the mutual relations of parameters from several or several simultaneously working measuring devices are easily visible on a common graph in real time. The project is connected with an outline of problems of musculoskeletal system diagnostics, aiming at creating a universal, systemic parametric graph, defining in parallel-multi-parametric and quantitative manner, the patient’s initial health profile as a set of parametric symmetries (or asymmetries), having specific and separate characteristics for healthy individuals in all age groups, as well as in groups with specific disease units. The directional pattern for Authors, aiming at the systemic recognition of the causative phenomena and the consequences of motion in the form of a multi-parameter graph calibrated by a common time axis is the way of electrode location, recording and param-eterization of the ECG curve. This universal formula, defining parametrically the problems of evolutionary and involutionary norms, as well as most known pathologies, has become the foundation of cardiology, functioning worldwide over the language barrier.