{"title":"CAPSL: The Component Authentication Process for Sandboxed Layouts","authors":"Taylor J. L. Whitaker, C. Bobda","doi":"10.1109/ISVLSI.2017.78","DOIUrl":null,"url":null,"abstract":"In this work, we propose a system-on-chip (SoC) design tool for the automatic generation of hardware sandboxes for securing untrusted IP to be integrated into trusted systems. The Component Authentication Process for Sandboxed Layouts (CAPSL) is a design flow that incorporates behavioral specifications of IP interfaces in order to generate sandboxes purposed for detecting trojan activation and isolating possible damage to a system at run-time. CAPSL adopts two formal models, interface automata and the Property Specification Language's sequential extended regular expressions (SERE), to generate reference monitors governing interactions of a collection of non-trusted IP. The sandbox partitions an untrusted sector that includes the non-secure IP and appropriate virtualized resources and controllers to isolate sandbox-system interactions upon deviation from the behavioral checkers. We review our design flow with an analysis of behavioral policy versatility and detection and defense mechanisms employed for various Trust-Hub.org benchmarks. Also presented is a brief resource evaluation highlighting CAPSL's reduced overhead compared to other run-time verification techniques.","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a system-on-chip (SoC) design tool for the automatic generation of hardware sandboxes for securing untrusted IP to be integrated into trusted systems. The Component Authentication Process for Sandboxed Layouts (CAPSL) is a design flow that incorporates behavioral specifications of IP interfaces in order to generate sandboxes purposed for detecting trojan activation and isolating possible damage to a system at run-time. CAPSL adopts two formal models, interface automata and the Property Specification Language's sequential extended regular expressions (SERE), to generate reference monitors governing interactions of a collection of non-trusted IP. The sandbox partitions an untrusted sector that includes the non-secure IP and appropriate virtualized resources and controllers to isolate sandbox-system interactions upon deviation from the behavioral checkers. We review our design flow with an analysis of behavioral policy versatility and detection and defense mechanisms employed for various Trust-Hub.org benchmarks. Also presented is a brief resource evaluation highlighting CAPSL's reduced overhead compared to other run-time verification techniques.