Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks

Shvan Karim, J. Harkin, L. McDaid, B. Gardiner, Junxiu Liu, D. Halliday, A. Tyrrell, J. Timmis, Alan G. Millard, Anju P. Johnson
{"title":"Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks","authors":"Shvan Karim, J. Harkin, L. McDaid, B. Gardiner, Junxiu Liu, D. Halliday, A. Tyrrell, J. Timmis, Alan G. Millard, Anju P. Johnson","doi":"10.1109/ISVLSI.2017.80","DOIUrl":null,"url":null,"abstract":"This paper presents a hardware based implementation of a biologically-faithful astrocyte-based selfrepairing mechanism for Spiking Neural Networks. Spiking Astrocyte-neuron Networks (SANNs) are a new computing paradigm which capture the key mechanisms of how the human brain performs repairs. Using SANN in hardware affords the potential for realizing computing architecture that can self-repair. This paper demonstrates that Spiking Astrocyte Neural Network (SANN) in hardware have a resilience to significant levels of faults. The key novelty of the paper resides in implementing an SANN on FPGAs using fixed-point representation and demonstrating graceful performance degradation to different levels of injected faults via its self-repair capability. A fixed-point implementation of astrocyte, neurons and tripartite synapses are presented and compared against previous hardware floating-point and Matlab software implementations of SANN. All results are obtained from the SANN FPGA implementation and show how the reduced fixedpoint representation can maintain the biologically-realistic repair capability","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a hardware based implementation of a biologically-faithful astrocyte-based selfrepairing mechanism for Spiking Neural Networks. Spiking Astrocyte-neuron Networks (SANNs) are a new computing paradigm which capture the key mechanisms of how the human brain performs repairs. Using SANN in hardware affords the potential for realizing computing architecture that can self-repair. This paper demonstrates that Spiking Astrocyte Neural Network (SANN) in hardware have a resilience to significant levels of faults. The key novelty of the paper resides in implementing an SANN on FPGAs using fixed-point representation and demonstrating graceful performance degradation to different levels of injected faults via its self-repair capability. A fixed-point implementation of astrocyte, neurons and tripartite synapses are presented and compared against previous hardware floating-point and Matlab software implementations of SANN. All results are obtained from the SANN FPGA implementation and show how the reduced fixedpoint representation can maintain the biologically-realistic repair capability
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用星形细胞-神经元网络评估fpga的自我修复
本文提出了一种基于星形胶质细胞的脉冲神经网络自修复机制的硬件实现。星形细胞-神经元网络(sann)是一种新的计算范式,它捕捉了人类大脑如何进行修复的关键机制。在硬件中使用SANN提供了实现可以自我修复的计算体系结构的可能性。本文证明了硬件中的星形胶质细胞神经网络(SANN)对显著水平的故障具有弹性。本文的关键新颖之处在于在fpga上使用定点表示实现SANN,并通过其自我修复能力展示不同级别注入故障的优雅性能退化。提出了星形胶质细胞、神经元和三方突触的定点实现,并与以往的硬件浮点和Matlab软件实现进行了比较。所有的结果都是从SANN FPGA实现中获得的,并显示了减少的不动点表示如何保持生物真实的修复能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Power Delivery Network and Cell Placement Aware IR-Drop Mitigation Technique: Harvesting Unused Timing Slacks to Schedule Useful Skews On Tolerating Faults of TSV/Microbumps for Power Delivery Networks in 3D IC Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks AEGLE's Cloud Infrastructure for Resource Monitoring and Containerized Accelerated Analytics Voltage Noise Analysis with Ring Oscillator Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1