Konstantina Koliogeorgi, Dimosthenis Masouros, Georgios Zervakis, S. Xydis, Tobias Becker, G. Gaydadjiev, D. Soudris
{"title":"AEGLE's Cloud Infrastructure for Resource Monitoring and Containerized Accelerated Analytics","authors":"Konstantina Koliogeorgi, Dimosthenis Masouros, Georgios Zervakis, S. Xydis, Tobias Becker, G. Gaydadjiev, D. Soudris","doi":"10.1109/ISVLSI.2017.70","DOIUrl":null,"url":null,"abstract":"This paper presents the cloud infrastructure of the AEGLE project, that targets to integrate cloud technologies together with heterogeneous reconfigurable computing in large scale healthcare systems for Big Bio-Data analytics. AEGLEs engineering concept brings together the hot big-data engines with emerging acceleration technologies, putting the basis for personalized and integrated health-care services, while also promoting related research activities. We introduce the design of AEGLE’s accelerated infrastructure along with the corresponding software and hardware acceleration stacks to support various big data analytics workloads showing that through effective resource containerization AEGLE’s cloud infrastructure is able to support high heterogeneity regarding to storage types, execution engines, utilized tools and execution platforms. Special care is given to the integration of high performance accelerators within the overall software stack of AEGLE’s infrastructure, which enable efficient execution of analytics, up to 140× according to our preliminary evaluations, over pure software executions.","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents the cloud infrastructure of the AEGLE project, that targets to integrate cloud technologies together with heterogeneous reconfigurable computing in large scale healthcare systems for Big Bio-Data analytics. AEGLEs engineering concept brings together the hot big-data engines with emerging acceleration technologies, putting the basis for personalized and integrated health-care services, while also promoting related research activities. We introduce the design of AEGLE’s accelerated infrastructure along with the corresponding software and hardware acceleration stacks to support various big data analytics workloads showing that through effective resource containerization AEGLE’s cloud infrastructure is able to support high heterogeneity regarding to storage types, execution engines, utilized tools and execution platforms. Special care is given to the integration of high performance accelerators within the overall software stack of AEGLE’s infrastructure, which enable efficient execution of analytics, up to 140× according to our preliminary evaluations, over pure software executions.