Investigation of benzenethiol (BT) materials as adhesion promoter for Cu/Epoxy interface using molecular dynamic simulation

P. He, H. Fan, M. Yuen
{"title":"Investigation of benzenethiol (BT) materials as adhesion promoter for Cu/Epoxy interface using molecular dynamic simulation","authors":"P. He, H. Fan, M. Yuen","doi":"10.1109/ESIME.2011.5765802","DOIUrl":null,"url":null,"abstract":"Cu/Epoxy is known as one of the weakest joint in the electronic packages. Due to the lack of adhesion, the copper and epoxy encapsulant interface is prone to delaminate, and failure will happen in electronic devices. To solve this problem, the thiol-based self-assembled molecular (SAM) treatment is introduced by our group. The benzene ring will give the hydrophobic characteristic to the surface up on the formation of thiol layer. The selected thiol functional group will react with copper substrate. The other end of benzenethiol materials are designed to react with epoxy composite to build a chemical bridge between copper and epoxy.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cu/Epoxy is known as one of the weakest joint in the electronic packages. Due to the lack of adhesion, the copper and epoxy encapsulant interface is prone to delaminate, and failure will happen in electronic devices. To solve this problem, the thiol-based self-assembled molecular (SAM) treatment is introduced by our group. The benzene ring will give the hydrophobic characteristic to the surface up on the formation of thiol layer. The selected thiol functional group will react with copper substrate. The other end of benzenethiol materials are designed to react with epoxy composite to build a chemical bridge between copper and epoxy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用分子动力学模拟研究苯硫醇(BT)材料作为Cu/环氧界面粘结促进剂的研究
铜/环氧树脂被认为是电子封装中最薄弱的接头之一。由于缺乏附着力,铜与环氧封装剂界面容易发生分层,在电子器件中会发生故障。为了解决这一问题,本课课组提出了巯基自组装分子(SAM)处理方法。苯环在硫醇层形成时使表面具有疏水特性。所选的硫醇官能团将与铜底物发生反应。苯硫醇材料的另一端与环氧复合材料反应,在铜和环氧之间建立化学桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of metaheuristic algorithms for simulation based OPF computation Challenges of power electronic packaging and modeling Impact of VDMOS source metallization ageing in 3D FEM wire lift off modeling Assessment of thermo mechanical properties of crosslinked epoxy mesoscale approach — Preliminary results FEA study on electrical interconnects for a power QFN package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1