Hardware Acceleration for Machine Learning

Ruizhe Zhao, W. Luk, Xinyu Niu, Huifeng Shi, Haitao Wang
{"title":"Hardware Acceleration for Machine Learning","authors":"Ruizhe Zhao, W. Luk, Xinyu Niu, Huifeng Shi, Haitao Wang","doi":"10.1109/ISVLSI.2017.127","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to enhance the performance of machine learning applications based on hardware acceleration. This approach is based on parameterised architectures designed for Convolutional Neural Network (CNN) and Support Vector Machine (SVM), and the associated design flow common to both. This approach is illustrated by two case studies including object detection and satellite data analysis. The potential of the proposed approach is presented.","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper presents an approach to enhance the performance of machine learning applications based on hardware acceleration. This approach is based on parameterised architectures designed for Convolutional Neural Network (CNN) and Support Vector Machine (SVM), and the associated design flow common to both. This approach is illustrated by two case studies including object detection and satellite data analysis. The potential of the proposed approach is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习的硬件加速
本文提出了一种基于硬件加速来提高机器学习应用性能的方法。该方法基于为卷积神经网络(CNN)和支持向量机(SVM)设计的参数化架构,以及两者共同的相关设计流程。该方法通过目标检测和卫星数据分析两个案例加以说明。提出了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Power Delivery Network and Cell Placement Aware IR-Drop Mitigation Technique: Harvesting Unused Timing Slacks to Schedule Useful Skews On Tolerating Faults of TSV/Microbumps for Power Delivery Networks in 3D IC Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks AEGLE's Cloud Infrastructure for Resource Monitoring and Containerized Accelerated Analytics Voltage Noise Analysis with Ring Oscillator Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1