Enhancement of signal integrity and power integrity with embedded capacitors in high-speed packages

K. Srinivasan, P. Muthana, R. Mandrekar, E. Engin, Jinwoo Choi, M. Swaminathan
{"title":"Enhancement of signal integrity and power integrity with embedded capacitors in high-speed packages","authors":"K. Srinivasan, P. Muthana, R. Mandrekar, E. Engin, Jinwoo Choi, M. Swaminathan","doi":"10.1109/ISQED.2006.60","DOIUrl":null,"url":null,"abstract":"Improvements in electrical performance of microelectronic systems can be achieved by the integration of passive elements such as capacitors, resistors and inductors. The advantage of embedded passives is their low parasitic values. In this paper, enhancement of signal-integrity and power-integrity is investigated when a high-k planar capacitor is used as a power-ground plane, with embedded high-k discrete capacitors that have low ESI and ESR values as decoupling capacitors for SSN suppression. In order to capture the effects of embedded capacitor performance, a test-structure involving many signal-lines referenced to a power-ground plane was simulated. Simulation results show that the high-k planar capacitor reduces coupling of noise currents through the power-ground planes and helps improve the eye-opening. Simulation results have been quantified for a case, where a fewer number of embedded discrete capacitors helps reduce SSN more significantly than surface-mounts. Transient co-simulation of the signal delivery network (SDN) and the power-delivery network (PDN) are performed using Y-parameters","PeriodicalId":138839,"journal":{"name":"7th International Symposium on Quality Electronic Design (ISQED'06)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Quality Electronic Design (ISQED'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2006.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Improvements in electrical performance of microelectronic systems can be achieved by the integration of passive elements such as capacitors, resistors and inductors. The advantage of embedded passives is their low parasitic values. In this paper, enhancement of signal-integrity and power-integrity is investigated when a high-k planar capacitor is used as a power-ground plane, with embedded high-k discrete capacitors that have low ESI and ESR values as decoupling capacitors for SSN suppression. In order to capture the effects of embedded capacitor performance, a test-structure involving many signal-lines referenced to a power-ground plane was simulated. Simulation results show that the high-k planar capacitor reduces coupling of noise currents through the power-ground planes and helps improve the eye-opening. Simulation results have been quantified for a case, where a fewer number of embedded discrete capacitors helps reduce SSN more significantly than surface-mounts. Transient co-simulation of the signal delivery network (SDN) and the power-delivery network (PDN) are performed using Y-parameters
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速封装中嵌入电容增强信号完整性和功率完整性
通过集成无源元件如电容器、电阻器和电感器,可以实现微电子系统电气性能的改进。嵌入式无源的优点是其寄生值低。本文研究了采用高k平面电容作为电源接地平面,嵌入具有低ESI和ESR值的高k离散电容作为抑制SSN的去耦电容时,信号完整性和功率完整性的增强。为了捕捉嵌入式电容性能的影响,模拟了一个涉及多个信号线的测试结构,参考电源-地平面。仿真结果表明,高k平面电容降低了通过电源-地平面的噪声电流的耦合,提高了视野。模拟结果已经量化了一种情况,其中较少数量的嵌入式离散电容器比表面安装更有助于显著降低SSN。利用y参数对信号传输网络(SDN)和功率传输网络(PDN)进行了瞬态联合仿真
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DFM methodology to evaluate the impact of lithography conditions on the speed of critical paths in a VLSI circuit Power-aware test pattern generation for improved concurrency at the core level Compact reduced order modeling for multiple-port interconnects Method to evaluate cable discharge event (CDE) reliability of integrated circuits in CMOS technology Minimizing ohmic loss in future processor IR events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1