N. Alimardani, J. F. Conley, E. W. Cowell, J. Wager, M. Chin, S. Kilpatrick, M. Dubey
{"title":"Stability and bias stressing of metal/insulator/metal diodes","authors":"N. Alimardani, J. F. Conley, E. W. Cowell, J. Wager, M. Chin, S. Kilpatrick, M. Dubey","doi":"10.1109/IIRW.2010.5706491","DOIUrl":null,"url":null,"abstract":"The performance and stability of metal/insulator/metal tunnel diodes was investigated as a function of interfacial roughness using Al, Ir, Pt, and ultra-smooth amorphous multi-metal (ZrCuAlNi) bottom electrodes with uniform Al2O3 tunnel dielectrics deposited via atomic layer deposition. Current density versus field behavior and device yield were found to be a function of interfacial roughness with smoother electrodes exhibiting more ideal behavior and higher percentages of working devices. A preliminary investigation of DC bias stressed devices suggests that interfacial roughness plays a large role in stability and reliability as well.","PeriodicalId":332664,"journal":{"name":"2010 IEEE International Integrated Reliability Workshop Final Report","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Integrated Reliability Workshop Final Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2010.5706491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The performance and stability of metal/insulator/metal tunnel diodes was investigated as a function of interfacial roughness using Al, Ir, Pt, and ultra-smooth amorphous multi-metal (ZrCuAlNi) bottom electrodes with uniform Al2O3 tunnel dielectrics deposited via atomic layer deposition. Current density versus field behavior and device yield were found to be a function of interfacial roughness with smoother electrodes exhibiting more ideal behavior and higher percentages of working devices. A preliminary investigation of DC bias stressed devices suggests that interfacial roughness plays a large role in stability and reliability as well.