On Updating a Virtual Metrology Model in Semiconductor Manufacturing via Transfer Learning

Rebecca Clain, Ikram Azzizi, Valeria Borodin, A. Roussy
{"title":"On Updating a Virtual Metrology Model in Semiconductor Manufacturing via Transfer Learning","authors":"Rebecca Clain, Ikram Azzizi, Valeria Borodin, A. Roussy","doi":"10.1109/asmc54647.2022.9792514","DOIUrl":null,"url":null,"abstract":"Manufacturing processes are often subject to drifts over production cycles. This study applies the paradigm of Transfer Learning (TL) to support the updating of a Virtual Metrology (VM) model based on a Convolutional Neural Network (CNN). The VM is applied to a Chemical Mechanical Planarization (CMP) to predict the average material removal rate. Through the prism of a benchmark case study, this paper empirically investigates how transfer learning can improve the updatability of a VM CNN-based model.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1706 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Manufacturing processes are often subject to drifts over production cycles. This study applies the paradigm of Transfer Learning (TL) to support the updating of a Virtual Metrology (VM) model based on a Convolutional Neural Network (CNN). The VM is applied to a Chemical Mechanical Planarization (CMP) to predict the average material removal rate. Through the prism of a benchmark case study, this paper empirically investigates how transfer learning can improve the updatability of a VM CNN-based model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的半导体制造虚拟计量模型更新研究
制造过程经常受到生产周期漂移的影响。本研究应用迁移学习(TL)范式支持基于卷积神经网络(CNN)的虚拟计量(VM)模型的更新。将虚拟机应用于化学机械刨平(CMP)来预测平均材料去除率。通过一个基准案例研究,本文实证研究了迁移学习如何提高基于VM cnn的模型的可更新性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1