S. Masui, K. Kawamura, I. Hamaguchi, T. Yano, T. Nakajima, M. Tachimori
{"title":"An analysis of buried-oxide growth in low-dose SIMOX wafers by high-temperature thermal oxidation","authors":"S. Masui, K. Kawamura, I. Hamaguchi, T. Yano, T. Nakajima, M. Tachimori","doi":"10.1109/SOI.1995.526506","DOIUrl":null,"url":null,"abstract":"The buried-oxide (BOX) growth by a high-temperature thermal oxidation of low-dose SIMOX wafers is becoming an indispensable technique for the improvement of material quality, for example, surface roughness and BOX leak path density, as well as the slight decrease in the parasitic capacitance. The physical mechanism of the BOX growth by a thermal oxidation has been investigated for bonded wafers oxidized at 1100/spl deg/C; however, the typical oxidation temperature for low-dose SIMOX wafers is much higher than 1100/spl deg/C. To clarify the oxidation mechanism at higher temperatures and predict the thermally-grown BOX thickness for various conditions, we explore the oxidation process with a simple model based on Deal and Grove's analysis.","PeriodicalId":149490,"journal":{"name":"1995 IEEE International SOI Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE International SOI Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1995.526506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The buried-oxide (BOX) growth by a high-temperature thermal oxidation of low-dose SIMOX wafers is becoming an indispensable technique for the improvement of material quality, for example, surface roughness and BOX leak path density, as well as the slight decrease in the parasitic capacitance. The physical mechanism of the BOX growth by a thermal oxidation has been investigated for bonded wafers oxidized at 1100/spl deg/C; however, the typical oxidation temperature for low-dose SIMOX wafers is much higher than 1100/spl deg/C. To clarify the oxidation mechanism at higher temperatures and predict the thermally-grown BOX thickness for various conditions, we explore the oxidation process with a simple model based on Deal and Grove's analysis.