{"title":"Distributed modeling approach applied to the power PIN diode using VHDL-AMS","authors":"A. Hneine, J. Massol, P. Tounsi, P. Austin","doi":"10.1109/ESIME.2011.5765795","DOIUrl":null,"url":null,"abstract":"This paper will present one of the first implementations in VHDL-AMS of a compact truly distributed modeling approach applied to the Power PIN diode. This approach is based on the unidimensional solution of the ambipolar diffusion equation describing the charges behavior in the low doped zone within the device. The method allows to transform this equation in space and time into a finite set of differential equations in time only. The adaptation of the compact model to VHDL-AMS language is demonstrated by the implentation into Questa ADMS simulator. To validate the compact model, simulation results will be compared with experimental results. The consistency of the results obtained from the simulation of the diode in a simple chopper circuit shows the efficiency and robustness of the model.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper will present one of the first implementations in VHDL-AMS of a compact truly distributed modeling approach applied to the Power PIN diode. This approach is based on the unidimensional solution of the ambipolar diffusion equation describing the charges behavior in the low doped zone within the device. The method allows to transform this equation in space and time into a finite set of differential equations in time only. The adaptation of the compact model to VHDL-AMS language is demonstrated by the implentation into Questa ADMS simulator. To validate the compact model, simulation results will be compared with experimental results. The consistency of the results obtained from the simulation of the diode in a simple chopper circuit shows the efficiency and robustness of the model.