Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges

C. Mackin, P. Narayanan, S. Ambrogio, H. Tsai, K. Spoon, A. Fasoli, An Chen, A. Friz, R. Shelby, G. Burr
{"title":"Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges","authors":"C. Mackin, P. Narayanan, S. Ambrogio, H. Tsai, K. Spoon, A. Fasoli, An Chen, A. Friz, R. Shelby, G. Burr","doi":"10.1109/IRPS45951.2020.9128315","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing with analog memory can accelerate deep neural networks (DNNs) by enabling multiply-accumulate (MAC) operations to occur within memory. Analog memory, however, presents a number of device-level challenges having macro-implications on the achievable accuracy and reliability of these artificial neural networks. This paper focuses on the adverse effects of conductance drift in phase-change memory (PCM) on network reliability. It is shown that conductance drift can be effectively compensated in a variety of networks by applying a ‘slope correction’ technique to the squashing functions to maintain accuracy/reliability for a period of ~1 year. In addition to conductance drift, PCM poses considerable variability challenges, which impact the accuracy of the initial t0 weights. This paper summarizes recent advances in optimizing t0 weight programming, and provides evidence suggesting that the combination of ‘slope correction’ and programming optimization techniques may allow DNN acceleration using analog memory while maintaining software-equivalent accuracy with reasonable reliability.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neuromorphic computing with analog memory can accelerate deep neural networks (DNNs) by enabling multiply-accumulate (MAC) operations to occur within memory. Analog memory, however, presents a number of device-level challenges having macro-implications on the achievable accuracy and reliability of these artificial neural networks. This paper focuses on the adverse effects of conductance drift in phase-change memory (PCM) on network reliability. It is shown that conductance drift can be effectively compensated in a variety of networks by applying a ‘slope correction’ technique to the squashing functions to maintain accuracy/reliability for a period of ~1 year. In addition to conductance drift, PCM poses considerable variability challenges, which impact the accuracy of the initial t0 weights. This paper summarizes recent advances in optimizing t0 weight programming, and provides evidence suggesting that the combination of ‘slope correction’ and programming optimization techniques may allow DNN acceleration using analog memory while maintaining software-equivalent accuracy with reasonable reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经形态计算与相位变化,设备可靠性和可变性的挑战
具有模拟存储器的神经形态计算可以通过在存储器中进行乘法累积(MAC)操作来加速深度神经网络(dnn)。然而,模拟存储器提出了许多设备级的挑战,这些挑战对这些人工神经网络的可实现精度和可靠性具有宏观影响。本文主要研究相变存储器(PCM)中电导漂移对网络可靠性的影响。结果表明,通过对压扁函数应用“斜率校正”技术,可以有效地补偿各种网络中的电导漂移,从而在1年左右的时间内保持精度/可靠性。除了电导漂移之外,PCM还存在相当大的可变性挑战,这会影响初始权重的准确性。本文总结了优化t0权重编程的最新进展,并提供证据表明,“斜率校正”和编程优化技术的结合可能允许DNN使用模拟存储器加速,同时保持软件等效精度和合理的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1