An Approach to Real-time Color-based Object Tracking

M. Asif, P. Angelov, H. Ahmed
{"title":"An Approach to Real-time Color-based Object Tracking","authors":"M. Asif, P. Angelov, H. Ahmed","doi":"10.1109/ISEFS.2006.251169","DOIUrl":null,"url":null,"abstract":"Object tracking is of great interest in different areas of industry, security and defense. Tracking moving objects based on color information is more robust than systems utilizing motion cues. In order to maintain the lock on the object as the surrounding conditions vary, the color model needs to be adapted in real-time. In this paper an on-line learning method for the color model is implemented using fuzzy adaptive resonance theory (ART). Fuzzy ART is a type of neural network that is trained based on competitive learning principle. The color model of the target region is regularly updated based on the vigilance criteria (which is a threshold) applied to the pixel color information. The target location in the next frame is predicted using evolving extended Takagi-Sugeno (exTS) model to improve the tracking performance. The results of applying exTS for prediction of the position of the moving target were compared with the usually used solution based on Kalman filter. The experiments with real footage demonstrate over a variety of scenarios the superiority of the exTS as a predictor comparing to the Kalman filter. Further investigation concentrates on using evolving clustering for realizing computationally efficient simultaneous tracking of different segments in the object","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"87 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Object tracking is of great interest in different areas of industry, security and defense. Tracking moving objects based on color information is more robust than systems utilizing motion cues. In order to maintain the lock on the object as the surrounding conditions vary, the color model needs to be adapted in real-time. In this paper an on-line learning method for the color model is implemented using fuzzy adaptive resonance theory (ART). Fuzzy ART is a type of neural network that is trained based on competitive learning principle. The color model of the target region is regularly updated based on the vigilance criteria (which is a threshold) applied to the pixel color information. The target location in the next frame is predicted using evolving extended Takagi-Sugeno (exTS) model to improve the tracking performance. The results of applying exTS for prediction of the position of the moving target were compared with the usually used solution based on Kalman filter. The experiments with real footage demonstrate over a variety of scenarios the superiority of the exTS as a predictor comparing to the Kalman filter. Further investigation concentrates on using evolving clustering for realizing computationally efficient simultaneous tracking of different segments in the object
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于颜色的实时目标跟踪方法
目标跟踪在工业、安全和国防的各个领域都引起了人们的极大兴趣。基于颜色信息跟踪运动物体比使用运动线索的系统更健壮。为了在周围条件变化时保持对物体的锁定,需要实时调整颜色模型。本文利用模糊自适应共振理论(ART)实现了色彩模型的在线学习方法。模糊ART是一种基于竞争学习原理训练的神经网络。目标区域的颜色模型根据应用于像素颜色信息的警戒标准(即阈值)定期更新。利用扩展Takagi-Sugeno (exTS)模型预测下一帧的目标位置,提高跟踪性能。将ext应用于运动目标位置预测的结果与常用的基于卡尔曼滤波的预测结果进行了比较。与卡尔曼滤波器相比,真实镜头的实验在各种场景下证明了ext作为预测器的优越性。进一步的研究集中在使用进化聚类来实现计算高效的同时跟踪目标的不同部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1