14.5 A 1.22ps integrated-jitter 0.25-to-4GHz fractional-N ADPLL in 16nm FinFET CM0S

Tsung-Hsien Tsai, Min-Shueh Yuan, Chih-Hsien Chang, Chia-Chun Liao, Chao-Chieh Li, R. Staszewski
{"title":"14.5 A 1.22ps integrated-jitter 0.25-to-4GHz fractional-N ADPLL in 16nm FinFET CM0S","authors":"Tsung-Hsien Tsai, Min-Shueh Yuan, Chih-Hsien Chang, Chia-Chun Liao, Chao-Chieh Li, R. Staszewski","doi":"10.1109/ISSCC.2015.7063025","DOIUrl":null,"url":null,"abstract":"All-digital phase-locked loops (ADPLLs) offer faster locking time, easier portability and better performance in advanced semiconductor processes as compared to analog PLLs. Advanced FinFET devices exhibit better gm and ION than planar devices [1], but they are offered only in a limited number of device sizes, thus precluding their use in traditional analog design styles. In an ADPLL, the transistors are used as switches with little regard to their linear analog properties. Hence, ADPLL performance should improve with the adoption of FinFET devices. Inverter delay in a 16nm FinFET process is less than half of that in a 28nm planar process, improving in-band phase noise (PN) by around 6dB [2]. Ring-type digitally controlled oscillators (DCOs) provide wide frequency tuning range (FTR), but poor PN performance degrades the ADPLL figure of merit (FoM) [3]. Achieving an FoM better than -225dB using a ring DCO is a challenge. In this work, we presenta 0.25-to-4GHz, 1.22ps integrated jitter and -228.6dB FoM fractional-N ADPLL with spread-spectrum clocking (SSC) capability in 16nm FinFET CMOS.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

All-digital phase-locked loops (ADPLLs) offer faster locking time, easier portability and better performance in advanced semiconductor processes as compared to analog PLLs. Advanced FinFET devices exhibit better gm and ION than planar devices [1], but they are offered only in a limited number of device sizes, thus precluding their use in traditional analog design styles. In an ADPLL, the transistors are used as switches with little regard to their linear analog properties. Hence, ADPLL performance should improve with the adoption of FinFET devices. Inverter delay in a 16nm FinFET process is less than half of that in a 28nm planar process, improving in-band phase noise (PN) by around 6dB [2]. Ring-type digitally controlled oscillators (DCOs) provide wide frequency tuning range (FTR), but poor PN performance degrades the ADPLL figure of merit (FoM) [3]. Achieving an FoM better than -225dB using a ring DCO is a challenge. In this work, we presenta 0.25-to-4GHz, 1.22ps integrated jitter and -228.6dB FoM fractional-N ADPLL with spread-spectrum clocking (SSC) capability in 16nm FinFET CMOS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
14.5 A 1.22ps集成抖动0.25- 4ghz分数n ADPLL, 16nm FinFET CM0S
与模拟锁相环相比,全数字锁相环(adpll)在先进的半导体工艺中提供更快的锁定时间,更容易携带和更好的性能。先进的FinFET器件比平面器件[1]表现出更好的gm和ION,但它们只能在有限数量的器件尺寸中提供,因此无法在传统的模拟设计风格中使用。在ADPLL中,晶体管被用作开关,很少考虑其线性模拟特性。因此,ADPLL的性能应该随着FinFET器件的采用而提高。16nm FinFET工艺的逆变器延迟不到28nm平面工艺的一半,将带内相位噪声(PN)提高了约6dB[2]。环型数字控制振荡器(dco)提供宽频率调谐范围(FTR),但PN性能差会降低ADPLL的质量因数(FoM)[3]。使用环形DCO实现优于-225dB的FoM是一个挑战。在这项工作中,我们在16nm FinFET CMOS中提出了0.25至4ghz, 1.22ps集成抖动和-228.6dB FoM分数n ADPLL,具有扩频时钟(SSC)能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1