Transistor Temperature Deviation Analysis in Monolithic 3D Standard Cells

M. Brocard, B. Mathieu, J. Colonna, C. Santos, C. Fenouillet-Béranger, C. Lu, G. Cibrario, L. Brunet, P. Batude, F. Andrieu, S. Thuries, O. Billoint
{"title":"Transistor Temperature Deviation Analysis in Monolithic 3D Standard Cells","authors":"M. Brocard, B. Mathieu, J. Colonna, C. Santos, C. Fenouillet-Béranger, C. Lu, G. Cibrario, L. Brunet, P. Batude, F. Andrieu, S. Thuries, O. Billoint","doi":"10.1109/ISVLSI.2017.100","DOIUrl":null,"url":null,"abstract":"This study focuses on temperature deviation during operation of transistors inside a monolithic 3D standard cell built on two tiers. Early assessment of this topic is crucial to manage circuit design and requires both steady-state and transient thermal analysis at transistor level. A representative 3D standard cell in 14nm FDSOI technology is considered, using intermediate Back-End-Of-Line (iBEOL) and top tier BEOL. Steady-state and transient power dissipations in NMOS and PMOS are extracted from SPICE simulations with variables such as output load capacitance and operating temperature. 3D thermal simulations are then performed to assess the impact of design parameters such as routing densities, thicknesses of iBEOL and BEOL, their number of metal layers and packaging techniques. Steady-state and transient thermal simulations enable precise analysis to correlate temperature deviation of transistors with these parameters. Design guidelines are provided to limit the temperature deviation between top and bottom tier which can reach 7°Celsius during circuit operations in the worst case","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study focuses on temperature deviation during operation of transistors inside a monolithic 3D standard cell built on two tiers. Early assessment of this topic is crucial to manage circuit design and requires both steady-state and transient thermal analysis at transistor level. A representative 3D standard cell in 14nm FDSOI technology is considered, using intermediate Back-End-Of-Line (iBEOL) and top tier BEOL. Steady-state and transient power dissipations in NMOS and PMOS are extracted from SPICE simulations with variables such as output load capacitance and operating temperature. 3D thermal simulations are then performed to assess the impact of design parameters such as routing densities, thicknesses of iBEOL and BEOL, their number of metal layers and packaging techniques. Steady-state and transient thermal simulations enable precise analysis to correlate temperature deviation of transistors with these parameters. Design guidelines are provided to limit the temperature deviation between top and bottom tier which can reach 7°Celsius during circuit operations in the worst case
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单片三维标准电池晶体管温度偏差分析
本研究的重点是建立在两层的单片三维标准单元内的晶体管工作时的温度偏差。该主题的早期评估对于管理电路设计至关重要,并且需要在晶体管水平上进行稳态和瞬态热分析。考虑了14nm FDSOI技术中具有代表性的3D标准电池,采用中间后端线(iBEOL)和顶层BEOL。NMOS和PMOS的稳态和瞬态功耗由SPICE模拟得到,并随输出负载电容和工作温度等变量变化。然后进行3D热模拟,以评估设计参数的影响,如布线密度、iBEOL和BEOL的厚度、金属层数和封装技术。稳态和瞬态热模拟可以精确分析晶体管的温度偏差与这些参数之间的关系。提供了设计指南,以限制顶层和底层之间的温度偏差,在最坏的情况下,电路运行期间可以达到7摄氏度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Power Delivery Network and Cell Placement Aware IR-Drop Mitigation Technique: Harvesting Unused Timing Slacks to Schedule Useful Skews On Tolerating Faults of TSV/Microbumps for Power Delivery Networks in 3D IC Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks AEGLE's Cloud Infrastructure for Resource Monitoring and Containerized Accelerated Analytics Voltage Noise Analysis with Ring Oscillator Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1