Dual Converging Jets for Enhanced Liquid Impingement Cooling

Reece Whitt, R. Estrella, D. Huitink
{"title":"Dual Converging Jets for Enhanced Liquid Impingement Cooling","authors":"Reece Whitt, R. Estrella, D. Huitink","doi":"10.1115/ipack2022-96635","DOIUrl":null,"url":null,"abstract":"\n Jet impingement cooling is an advanced thermal management technique for high heat flux applications. Standard configurations include single, axisymmetric jets with orifice, slot, or pipe nozzles. This choice in nozzle shape, number of jets and jet inclination greatly influences the turbulence generated caused by fluid entrainment due to differences in initial velocity profiles and location of secondary stagnation points. Regarding high power electronics with integrated jet impingement schemes, turbulence and heat transfer rates must be optimized to meet the extreme cooling requirements. In this study, the heat transfer rates of dual inclined converging jets are investigated experimentally. Emphasis is placed on the comparison of different jet schemes with respect to geometrical parameters including nozzle pitch, incline angle, and nozzle-to-targe plate spacing. A parametric experimental investigation is performed as a point of comparison using a modular, additively manufactured jet setup. Thermal energy is applied to an aluminum base plate using a 200 W resistive heater to emulate a hot spot generated in high-power electronics. It is observed that the introduction of inclined and parallel jets can have the simultaneous effect of increasing heat transfer and creating more predictable heat transfer.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-96635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Jet impingement cooling is an advanced thermal management technique for high heat flux applications. Standard configurations include single, axisymmetric jets with orifice, slot, or pipe nozzles. This choice in nozzle shape, number of jets and jet inclination greatly influences the turbulence generated caused by fluid entrainment due to differences in initial velocity profiles and location of secondary stagnation points. Regarding high power electronics with integrated jet impingement schemes, turbulence and heat transfer rates must be optimized to meet the extreme cooling requirements. In this study, the heat transfer rates of dual inclined converging jets are investigated experimentally. Emphasis is placed on the comparison of different jet schemes with respect to geometrical parameters including nozzle pitch, incline angle, and nozzle-to-targe plate spacing. A parametric experimental investigation is performed as a point of comparison using a modular, additively manufactured jet setup. Thermal energy is applied to an aluminum base plate using a 200 W resistive heater to emulate a hot spot generated in high-power electronics. It is observed that the introduction of inclined and parallel jets can have the simultaneous effect of increasing heat transfer and creating more predictable heat transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强液体撞击冷却的双收敛射流
射流冲击冷却是一种适用于高热流密度应用的先进热管理技术。标准配置包括单轴对称射流孔,槽,或管喷嘴。由于初始速度分布和二次滞止点位置的不同,喷嘴形状、射流数量和射流倾角的选择对流体夹带产生的湍流产生了很大的影响。对于集成射流冲击方案的大功率电子设备,必须优化湍流和传热速率以满足极端冷却要求。本文通过实验研究了双倾斜会聚射流的换热速率。重点放在不同的射流方案的几何参数,包括喷嘴间距,倾斜角和喷嘴与靶板间距的比较。参数实验调查进行了比较点使用模块化,增材制造的射流设置。使用200w电阻加热器将热能应用于铝基板,以模拟大功率电子设备中产生的热点。观察到,引入倾斜和平行射流可以同时增加传热和产生更可预测的传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI/ML Applications for Thermally Aware SoC Designs Effects of Mechanical Cycling Induced Damage on the Creep Response of SAC305 Solder A Study on Parameters That Impact the Thermal Fatigue Life of BGA Solder Joints Experimental Investigation of the Impact of Improved Ducting and Chassis Re-Design of a Hybrid-Cooled Server Electro-Chemical Migration in Aerosol-Jet Printed Electronics Using Temperature-Humidity and Water Droplet Testing Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1