Genetic Iterative Feedback Tuning (GIFT) Method for Fuzzy Control System Development

R. Precup, S. Preitl
{"title":"Genetic Iterative Feedback Tuning (GIFT) Method for Fuzzy Control System Development","authors":"R. Precup, S. Preitl","doi":"10.1109/ISEFS.2006.251133","DOIUrl":null,"url":null,"abstract":"This paper proposes an original iterative feedback tuning (IFT) method employing genetic algorithms to develop a class of fuzzy control systems. The approach is based on using the linear case results from the original IFT method and on replacing the parameter update law by genetic algorithms. Then, these results are transferred to the fuzzy case in terms of the modal equivalence principle resulting in an attractive development method referred to as genetic iterative feedback tuning (GIFT). The GIFT method is applied to the development of fuzzy control systems with PI-fuzzy controllers dedicated to a class of integral type servo systems, where the linear case is focused on the IFT method in connection with the extended symmetrical optimum method to obtain the initial values of the linear PI controller parameters. Real-time experimental results corresponding to a fuzzy controlled nonlinear servo system are presented to validate the development method","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes an original iterative feedback tuning (IFT) method employing genetic algorithms to develop a class of fuzzy control systems. The approach is based on using the linear case results from the original IFT method and on replacing the parameter update law by genetic algorithms. Then, these results are transferred to the fuzzy case in terms of the modal equivalence principle resulting in an attractive development method referred to as genetic iterative feedback tuning (GIFT). The GIFT method is applied to the development of fuzzy control systems with PI-fuzzy controllers dedicated to a class of integral type servo systems, where the linear case is focused on the IFT method in connection with the extended symmetrical optimum method to obtain the initial values of the linear PI controller parameters. Real-time experimental results corresponding to a fuzzy controlled nonlinear servo system are presented to validate the development method
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传迭代反馈整定方法在模糊控制系统开发中的应用
本文提出了一种利用遗传算法开发一类模糊控制系统的迭代反馈整定(IFT)方法。该方法基于利用原始IFT方法的线性情况结果,并用遗传算法代替参数更新律。然后,根据模态等效原理将这些结果转移到模糊情况下,从而产生一种有吸引力的开发方法,即遗传迭代反馈调谐(GIFT)。将GIFT方法应用于一类积分型伺服系统的PI-模糊控制器模糊控制系统的开发,其中线性案例集中在IFT方法与扩展对称最优方法相结合,以获得线性PI控制器参数的初值。给出了一个模糊控制非线性伺服系统的实时实验结果,验证了该开发方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1