{"title":"Nanomilling and STEM Imaging of Sub-50 nm InP HEMT","authors":"Besmeh F. Raya","doi":"10.31399/asm.cp.istfa2021p0146","DOIUrl":null,"url":null,"abstract":"\n The sub-50 nm Indium Arsenide Composite Channel (IACC) High Electron Mobility Transistors (HEMTs) are fabricated on 100 mm Indium Phosphide (InP) substrates. This technology offers the best performance for low-noise and high-frequency, space and military applications. Typical failure mechanisms are observed in III-V HEMT technologies, including gate sinking, impact ionization and electromigration. Experiments were conducted to understand failure mechanisms of the IACC HEMTs by life testing devices at accelerated temperatures and biases; their electrical characteristics were measured at each stress interval. In order to determine which devices and where any defects occurred after the accelerated life tests, an additional test was completed, a Low-Noise Amplifier (LNA) Circuit assessment. The Low-Noise Amplifier (LNA) Circuit assessment determines which HEMT device is the weakest amongst the LNA circuit. Since many of the known III-V semiconductor failure mechanisms physically degrade or damage HEMTs, cross-sections are important to prepare to detect these mechanisms. In this presentation, advanced microscopy techniques with sub-nanometer resolutions, will examine physical characteristics of the HEMT at the atomic scale. The microscopy techniques will include a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM), Nanomill and a Transmission Electron Microscope (TEM) along with Energy Dispersive Spectroscopy (EDS).","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sub-50 nm Indium Arsenide Composite Channel (IACC) High Electron Mobility Transistors (HEMTs) are fabricated on 100 mm Indium Phosphide (InP) substrates. This technology offers the best performance for low-noise and high-frequency, space and military applications. Typical failure mechanisms are observed in III-V HEMT technologies, including gate sinking, impact ionization and electromigration. Experiments were conducted to understand failure mechanisms of the IACC HEMTs by life testing devices at accelerated temperatures and biases; their electrical characteristics were measured at each stress interval. In order to determine which devices and where any defects occurred after the accelerated life tests, an additional test was completed, a Low-Noise Amplifier (LNA) Circuit assessment. The Low-Noise Amplifier (LNA) Circuit assessment determines which HEMT device is the weakest amongst the LNA circuit. Since many of the known III-V semiconductor failure mechanisms physically degrade or damage HEMTs, cross-sections are important to prepare to detect these mechanisms. In this presentation, advanced microscopy techniques with sub-nanometer resolutions, will examine physical characteristics of the HEMT at the atomic scale. The microscopy techniques will include a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM), Nanomill and a Transmission Electron Microscope (TEM) along with Energy Dispersive Spectroscopy (EDS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚50 nm InP HEMT的纳米铣削和STEM成像
在100mm磷化铟(InP)衬底上制备了低于50nm的砷化铟复合通道(IACC)高电子迁移率晶体管(hemt)。该技术为低噪声和高频、空间和军事应用提供了最佳性能。在III-V型HEMT中观察到典型的失效机制,包括栅极下沉、冲击电离和电迁移。在加速温度和偏置条件下,通过寿命测试装置了解IACC hemt的失效机理;在每个应力区间测量它们的电特性。为了确定在加速寿命测试后出现哪些器件和任何缺陷,完成了另一项测试,即低噪声放大器(LNA)电路评估。低噪声放大器(LNA)电路评估确定哪个HEMT器件是LNA电路中最弱的。由于许多已知的III-V型半导体失效机制会物理地降解或损坏hemt,因此横截面对于准备检测这些机制非常重要。在本次演讲中,先进的亚纳米分辨率显微镜技术将在原子尺度上检查HEMT的物理特性。显微镜技术将包括聚焦离子束/扫描电子显微镜(FIB/SEM),纳米磨和透射电子显微镜(TEM)以及能量色散光谱(EDS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCM Application and Failure Analysis Procedure for Ion-Implantation Issues in Power Devices Low Angle Annular Dark Field Scanning Transmission Electron Microscopy Analysis of Phase Change Material Report Classification for Semiconductor Failure Analysis Application and Optimization of Automated ECCI Mapping to the Analysis of Lowly Defective Epitaxial Films on Blanket or Patterned Wafers Logo Classification and Data Augmentation Techniques for PCB Assurance and Counterfeit Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1