Enhanced Threshold Voltage Stability in ZnO Thin-Film-Transistors by Excess of Oxygen in Atomic Layer Deposited Al2O3

R. Rodriguez-Davila, R. Chapman, M. Catalano, M. Quevedo-López, C. Young
{"title":"Enhanced Threshold Voltage Stability in ZnO Thin-Film-Transistors by Excess of Oxygen in Atomic Layer Deposited Al2O3","authors":"R. Rodriguez-Davila, R. Chapman, M. Catalano, M. Quevedo-López, C. Young","doi":"10.1109/IRPS45951.2020.9129345","DOIUrl":null,"url":null,"abstract":"The prolonged bias stress of ZnO TFTs transistors with Al2O3 deposited at 100, 175, and 250°C is presented. Fully patterned bottom gated and top contacted devices serve as the test structures. The reliability study shows increasing threshold voltage shifting of 10.5, 18.6, and 27.2 % with deposition temperature with no significant change in the density of interface states for all the samples. Nevertheless, there is a dependence of the oxide trap states with stress time. The analysis of the transconductance as a function of the threshold voltage shifting indicates that oxide traps states near the interface are the dominant instability mechanism for significant stress times. The Al2O3 deposited at a temperature of 100 °C contains a higher concentration of oxygen compared to the other samples. This present oxygen excess could be filling oxygen vacancies present in the Al2O3, thereby resulting in a smaller ΔVTH.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9129345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prolonged bias stress of ZnO TFTs transistors with Al2O3 deposited at 100, 175, and 250°C is presented. Fully patterned bottom gated and top contacted devices serve as the test structures. The reliability study shows increasing threshold voltage shifting of 10.5, 18.6, and 27.2 % with deposition temperature with no significant change in the density of interface states for all the samples. Nevertheless, there is a dependence of the oxide trap states with stress time. The analysis of the transconductance as a function of the threshold voltage shifting indicates that oxide traps states near the interface are the dominant instability mechanism for significant stress times. The Al2O3 deposited at a temperature of 100 °C contains a higher concentration of oxygen compared to the other samples. This present oxygen excess could be filling oxygen vacancies present in the Al2O3, thereby resulting in a smaller ΔVTH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al2O3原子层中过量氧增强ZnO薄膜晶体管阈值电压稳定性
研究了Al2O3在100、175和250°C下沉积ZnO TFTs晶体管的延长偏置应力。全图案化的底部门控和顶部接触器件作为测试结构。可靠性研究表明,随着沉积温度的升高,阈值电压位移分别增加了10.5、18.6%和27.2%,而所有样品的界面态密度没有显著变化。然而,氧化阱的状态与应力时间有关。跨导作为阈值电压位移的函数分析表明,界面附近的氧化陷阱状态是显著应力时间的主要不稳定机制。与其他样品相比,在100℃下沉积的Al2O3含有更高浓度的氧。这种过剩的氧可以填补存在于Al2O3中的氧空位,从而导致更小的ΔVTH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1