The Effect of Wafer Edge Cu Contamination on FinFET Devices

Yong Guo, Jason D. Jones, Yanan Guo, J. Hurst, Jinyoung Lee, Stuart Son
{"title":"The Effect of Wafer Edge Cu Contamination on FinFET Devices","authors":"Yong Guo, Jason D. Jones, Yanan Guo, J. Hurst, Jinyoung Lee, Stuart Son","doi":"10.31399/asm.cp.istfa2021p0040","DOIUrl":null,"url":null,"abstract":"\n The effect of copper (Cu) contamination inside the Si substrate from the wafer edge to the nearby devices has been investigated. After the Cu seed layer deposition, Cu contacted directly with Si at wafer edge where dielectric isolation layer was removed. Under the routine BEOL metallization and after the capping SiON/Si2O layers, SEM and AES analysis located a strip of islets of Cu contaminants. TEM analysis revealed that the seed Cu had interacted with Si substrate to form a stable ?-Cu3Si intermetallic compound that appeared to be planted into the Si substrate at the surface. SIMS analysis from the wafer backside, opposite to this strip of ?-Cu3Si islets at front, showed no Cu detection even after the majority of the backside Si was removed by grinding. Electrical nano-probing did not discern any parametric drift for the nanometer FinFET devices on chips near the edge surface of massive ?-Cu3Si islets in comparison with a reference chip from an uncontaminated wafer center. These results indicate that the formation of ?-Cu3Si, with a well-defined crystalline structure and a relatively stable stoichiometry, immobilizes Cu diffusion inside the Si substrate. In other word, the impact of Cu diffusion in Si has no effect on device performances as long as ?-Cu3Si is not directly formed in the FinFET channel or presents to short any structures within the chip.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of copper (Cu) contamination inside the Si substrate from the wafer edge to the nearby devices has been investigated. After the Cu seed layer deposition, Cu contacted directly with Si at wafer edge where dielectric isolation layer was removed. Under the routine BEOL metallization and after the capping SiON/Si2O layers, SEM and AES analysis located a strip of islets of Cu contaminants. TEM analysis revealed that the seed Cu had interacted with Si substrate to form a stable ?-Cu3Si intermetallic compound that appeared to be planted into the Si substrate at the surface. SIMS analysis from the wafer backside, opposite to this strip of ?-Cu3Si islets at front, showed no Cu detection even after the majority of the backside Si was removed by grinding. Electrical nano-probing did not discern any parametric drift for the nanometer FinFET devices on chips near the edge surface of massive ?-Cu3Si islets in comparison with a reference chip from an uncontaminated wafer center. These results indicate that the formation of ?-Cu3Si, with a well-defined crystalline structure and a relatively stable stoichiometry, immobilizes Cu diffusion inside the Si substrate. In other word, the impact of Cu diffusion in Si has no effect on device performances as long as ?-Cu3Si is not directly formed in the FinFET channel or presents to short any structures within the chip.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶圆边缘铜污染对 FinFET 器件的影响
我们研究了硅衬底内部铜(Cu)污染从晶圆边缘到附近器件的影响。铜种子层沉积后,铜在晶片边缘直接与硅接触,绝缘层被移除。在常规 BEOL 金属化和封盖 SiON/Si2O 层之后,扫描电子显微镜和 AES 分析发现了一条铜杂质带。TEM 分析表明,种子铜与硅衬底相互作用,形成了稳定的 ?-Cu3Si 金属间化合物,似乎在表面植入了硅衬底。从晶片背面进行的 SIMS 分析显示,即使通过研磨去除背面的大部分硅,也没有检测到铜。与来自未受污染晶圆中心的参考芯片相比,在靠近大量?这些结果表明,?-Cu3Si 具有明确的晶体结构和相对稳定的化学计量,它的形成固定了硅衬底内部的铜扩散。换句话说,只要?-Cu3Si 不直接在 FinFET 沟道中形成,也不与芯片内的任何结构短接,那么硅中的铜扩散就不会对器件性能产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCM Application and Failure Analysis Procedure for Ion-Implantation Issues in Power Devices Low Angle Annular Dark Field Scanning Transmission Electron Microscopy Analysis of Phase Change Material Report Classification for Semiconductor Failure Analysis Application and Optimization of Automated ECCI Mapping to the Analysis of Lowly Defective Epitaxial Films on Blanket or Patterned Wafers Logo Classification and Data Augmentation Techniques for PCB Assurance and Counterfeit Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1