Unified Model for Contrast Enhancement and Denoising

A. P. James, O. Krestinskaya, J. Mathew
{"title":"Unified Model for Contrast Enhancement and Denoising","authors":"A. P. James, O. Krestinskaya, J. Mathew","doi":"10.1109/ISVLSI.2017.73","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt a challenging task to unify two important complementary operations, i.e. contrast enhancement and denoising, that is required in most image processing applications. The proposed method is implemented using practical analog circuit configurations that can lead to near real-time processing capabilities useful to be integrated with vision sensors. Metrics used for performance includes estimation of Residual Noise Level (RNL), Structural Similarity Index Measure (SSIM), Output-to-Input Contrast Ratio (CRo_i), and its combined score (SCD). The class of contrast stretching methods has resulted in higher noise levels (RNL ≥ 7) along with increased contrast measures (CRo-i ≥ eight times than that of the input image) and SSIM ≤ 0.52. Denoising methods generates images with lesser noise levels (RNL ≤ 0.2308), poor contrast enhancements (CRo-i ≤ 1.31) and with best structural similarity (SSIM ≥ 0.85). In contrast, the proposed model offers best contrast stretching (CRo-i = 5.83), least noise (RNL = 0.02), a descent structural similarity (SSIM = 0.6453) and the highest combined score (SCD = 169).","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we attempt a challenging task to unify two important complementary operations, i.e. contrast enhancement and denoising, that is required in most image processing applications. The proposed method is implemented using practical analog circuit configurations that can lead to near real-time processing capabilities useful to be integrated with vision sensors. Metrics used for performance includes estimation of Residual Noise Level (RNL), Structural Similarity Index Measure (SSIM), Output-to-Input Contrast Ratio (CRo_i), and its combined score (SCD). The class of contrast stretching methods has resulted in higher noise levels (RNL ≥ 7) along with increased contrast measures (CRo-i ≥ eight times than that of the input image) and SSIM ≤ 0.52. Denoising methods generates images with lesser noise levels (RNL ≤ 0.2308), poor contrast enhancements (CRo-i ≤ 1.31) and with best structural similarity (SSIM ≥ 0.85). In contrast, the proposed model offers best contrast stretching (CRo-i = 5.83), least noise (RNL = 0.02), a descent structural similarity (SSIM = 0.6453) and the highest combined score (SCD = 169).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对比度增强和去噪的统一模型
在本文中,我们尝试一个具有挑战性的任务来统一两个重要的互补操作,即对比度增强和去噪,这是大多数图像处理应用所需要的。该方法采用实用的模拟电路结构实现,可实现与视觉传感器集成的近实时处理能力。用于性能的指标包括估计残余噪声水平(RNL),结构相似性指数测量(SSIM),输出-输入对比度(CRo_i)及其综合得分(SCD)。这类对比度拉伸方法产生了更高的噪声水平(RNL≥7),同时增加了对比度(CRo-i≥输入图像的8倍),SSIM≤0.52。降噪方法生成的图像噪声水平较低(RNL≤0.2308),对比度增强较差(CRo-i≤1.31),结构相似度最好(SSIM≥0.85)。相比之下,该模型具有最佳对比度拉伸(CRo-i = 5.83)、最小噪声(RNL = 0.02)、下降结构相似度(SSIM = 0.6453)和最高综合得分(SCD = 169)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Power Delivery Network and Cell Placement Aware IR-Drop Mitigation Technique: Harvesting Unused Timing Slacks to Schedule Useful Skews On Tolerating Faults of TSV/Microbumps for Power Delivery Networks in 3D IC Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks AEGLE's Cloud Infrastructure for Resource Monitoring and Containerized Accelerated Analytics Voltage Noise Analysis with Ring Oscillator Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1