A novel approach to in-field, in-mission reliability monitoring based on Deep Data

Evelyn Landman, Noam Brousard, Tamar Naishlos
{"title":"A novel approach to in-field, in-mission reliability monitoring based on Deep Data","authors":"Evelyn Landman, Noam Brousard, Tamar Naishlos","doi":"10.1109/IRPS45951.2020.9128846","DOIUrl":null,"url":null,"abstract":"This paper describes a deep data approach to reliability monitoring in advanced electronics, based on degradation as a precursor for failure. By applying machine learning algorithms and analytics to data created by on-chip monitoring IPs (Agents), IC/system health and performance can be continuously monitored, at all stages of the product lifecycle. Realtime degradation analysis of critical parameters and failure mechanisms, under field conditions and application environments, points to the underlying Physics of Failure, which in turn allows to estimate the time to failure. Users are alerted on faults in advance, via a cloud-based analytics platform, and can take corrective action to prevent failures. The future of reliability physics and engineering is fundamentally shifting from accelerated lifetime tests to in-field failure prediction.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a deep data approach to reliability monitoring in advanced electronics, based on degradation as a precursor for failure. By applying machine learning algorithms and analytics to data created by on-chip monitoring IPs (Agents), IC/system health and performance can be continuously monitored, at all stages of the product lifecycle. Realtime degradation analysis of critical parameters and failure mechanisms, under field conditions and application environments, points to the underlying Physics of Failure, which in turn allows to estimate the time to failure. Users are alerted on faults in advance, via a cloud-based analytics platform, and can take corrective action to prevent failures. The future of reliability physics and engineering is fundamentally shifting from accelerated lifetime tests to in-field failure prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于深度数据的现场任务可靠性监测新方法
本文描述了一种基于退化作为故障前兆的先进电子设备可靠性监测的深度数据方法。通过将机器学习算法和分析应用于片上监控ip(代理)创建的数据,可以在产品生命周期的各个阶段持续监控IC/系统的健康状况和性能。在现场条件和应用环境下,对关键参数和失效机制进行实时退化分析,指出潜在的失效物理,从而可以估计失效时间。用户可以通过基于云的分析平台提前收到故障警报,并可以采取纠正措施来防止故障发生。可靠性物理和工程的未来将从加速寿命测试转向现场故障预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures Ruggedness of SiC devices under extreme conditions Gate-Oxide Trapping Enabled Synaptic Logic Transistor Threshold Voltage Shift in a-Si:H Thin film Transistors under ESD stress Conditions Sub-nanosecond Reverse Recovery Measurement for ESD Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1