Yan Zhang, Huihui Wang, Pei Lu, Fengdie Hu, Minxi Du, Xuan Zhang, Johan Liu
{"title":"MDS study on tensile properties of defective graphene sheet","authors":"Yan Zhang, Huihui Wang, Pei Lu, Fengdie Hu, Minxi Du, Xuan Zhang, Johan Liu","doi":"10.23919/empc53418.2021.9584951","DOIUrl":null,"url":null,"abstract":"Low-dimensional materials such as graphene exhibit superior electrical, mechanical and thermal properties. However, structural defects occur during the growth or treatment process of carbon nanomaterial and greatly affect the material properties. In this paper, molecular dynamics simulation methods are used to study the effects of atomic defects in graphene sheets on the tensile strength, and the vacancy type and defect orientation are considered in the cases of graphene sheets under various mechanical loadings. The simulation results show that for the graphene sheets with structural defects, the fracture starts near the original vacancy position. The tensile strength of the graphene sheets with X1-type vacancy defects under zigzag direction is reduced by about 26.9% compared with that of the defect-free graphene sheet, while the graphene sheet with X2-type vacancy defects shows the least decrease in magnitude, which is 9.5% lower than that of the perfect graphene sheet. When stretched in the armchair direction, the tensile strength of the graphene sheet with H2 vacancy defects was greatly reduced by 27.1%, and the X1 vacancy defects shows the least influence, where tensile strength of the graphene sheets was reduced by 11.2%.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Low-dimensional materials such as graphene exhibit superior electrical, mechanical and thermal properties. However, structural defects occur during the growth or treatment process of carbon nanomaterial and greatly affect the material properties. In this paper, molecular dynamics simulation methods are used to study the effects of atomic defects in graphene sheets on the tensile strength, and the vacancy type and defect orientation are considered in the cases of graphene sheets under various mechanical loadings. The simulation results show that for the graphene sheets with structural defects, the fracture starts near the original vacancy position. The tensile strength of the graphene sheets with X1-type vacancy defects under zigzag direction is reduced by about 26.9% compared with that of the defect-free graphene sheet, while the graphene sheet with X2-type vacancy defects shows the least decrease in magnitude, which is 9.5% lower than that of the perfect graphene sheet. When stretched in the armchair direction, the tensile strength of the graphene sheet with H2 vacancy defects was greatly reduced by 27.1%, and the X1 vacancy defects shows the least influence, where tensile strength of the graphene sheets was reduced by 11.2%.