"Gated-diode" in SOI MOSFETs: a sensitive tool for characterizing the buried Si-SiO/sub 2/ interface

Xuejun Zhao, D. Ioannou
{"title":"\"Gated-diode\" in SOI MOSFETs: a sensitive tool for characterizing the buried Si-SiO/sub 2/ interface","authors":"Xuejun Zhao, D. Ioannou","doi":"10.1109/SOI.1999.819854","DOIUrl":null,"url":null,"abstract":"Summary form only given. A critical factor in the development of SOI wafers and related CMOS technologies is the quality of the buried Si-SiO/sub 2/ interface. Careful wafer preparation is necessary to obtain reduced surface state density in order to suppress back channel leakage and improve hot carrier reliability and radiation hardness. However, the measurement of the back interface properties and in particular the interface state density remains one of the most difficult parameters to measure in SOI transistors. This is because the large thickness of the buried oxide (relative to gate oxide) renders the usual techniques insensitive and very difficult to apply (Ioannou et al., 1991; Wuters et al., 1989). There has recently been renewed interest in an old technique based on the gated-diode concept (Grove and Fitzelard, 1966), new refinements and modifications of which are being used for the study of current bulk CMOS technologies (Cai and Sah, 1999; Guan et al., 1999). The purpose of this paper is to explain how the presence of two channels makes the adaptation of this technique particularly useful for SOI MOSFETs and suitable for evaluation of the buried interface. The present approach is distinct from and complementary to a recently published modification of the gated-diode technique applied to dual-gate SOI devices for measurement of the recombination lifetime (Ernst et al., 1999).","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Summary form only given. A critical factor in the development of SOI wafers and related CMOS technologies is the quality of the buried Si-SiO/sub 2/ interface. Careful wafer preparation is necessary to obtain reduced surface state density in order to suppress back channel leakage and improve hot carrier reliability and radiation hardness. However, the measurement of the back interface properties and in particular the interface state density remains one of the most difficult parameters to measure in SOI transistors. This is because the large thickness of the buried oxide (relative to gate oxide) renders the usual techniques insensitive and very difficult to apply (Ioannou et al., 1991; Wuters et al., 1989). There has recently been renewed interest in an old technique based on the gated-diode concept (Grove and Fitzelard, 1966), new refinements and modifications of which are being used for the study of current bulk CMOS technologies (Cai and Sah, 1999; Guan et al., 1999). The purpose of this paper is to explain how the presence of two channels makes the adaptation of this technique particularly useful for SOI MOSFETs and suitable for evaluation of the buried interface. The present approach is distinct from and complementary to a recently published modification of the gated-diode technique applied to dual-gate SOI devices for measurement of the recombination lifetime (Ernst et al., 1999).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOI mosfet中的“门控二极管”:用于表征埋置Si-SiO/sub - 2/接口的灵敏工具
只提供摘要形式。SOI晶圆和相关CMOS技术发展的一个关键因素是埋置Si-SiO/sub - 2/接口的质量。为了抑制回道泄漏,提高热载子可靠性和辐射硬度,需要精心制备晶片以降低表面态密度。然而,后界面特性的测量,特别是界面态密度的测量仍然是SOI晶体管中最难测量的参数之一。这是因为埋藏氧化物(相对于栅极氧化物)的大厚度使得通常的技术不敏感并且很难应用(Ioannou等人,1991;Wuters et al., 1989)。最近,人们对基于门二极管概念的旧技术重新产生了兴趣(Grove和Fitzelard, 1966),对其进行了新的改进和修改,用于研究当前的大块CMOS技术(Cai和Sah, 1999;Guan等人,1999)。本文的目的是解释两个通道的存在如何使该技术的适应对SOI mosfet特别有用,并适用于埋藏界面的评估。目前的方法与最近发表的用于测量复合寿命的双栅SOI器件的门二极管技术的改进不同,并且是互补的(Ernst et al., 1999)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel 0.7 V two-port 6T SRAM memory cell structure with single-bit-line simultaneous read-and-write access (SBLSRWA) capability using partially-depleted SOI CMOS dynamic-threshold technique Power amplifiers on thin-film-silicon-on-insulator (TFSOI) technology Single chip wireless systems using SOI Buried oxide fringing capacitance: a new physical model and its implication on SOI device scaling and architecture A bandgap circuit operating up to 300/spl deg/C using lateral bipolar transistors in thin-film CMOS-SOI technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1