Tse-Ching Wu, Chien-Ju Chen, Yin-Nien Chen, V. Hu, P. Su, C. Chuang
{"title":"Evaluation of energy-efficient latch circuits with hybrid tunneling FET and FinFET devices for ultra-low-voltage applications","authors":"Tse-Ching Wu, Chien-Ju Chen, Yin-Nien Chen, V. Hu, P. Su, C. Chuang","doi":"10.1109/SOCC.2015.7406978","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the hybrid TFET-FinFET latch circuits and compare the clock-to-Q delay, dynamic energy, leakage power and energy-delay product (EDP) with all FinFET and all TFET implementations in near-threshold region. We use atomistic 3D TCAD mixed-mode simulations for transistor characteristics and HSPICE circuit simulations with look-up table based Verilog-A models calibrated with TCAD simulation results. Four types of latch circuits are evaluated, including standard clocked CMOS latch (SCCL), low-voltage C2MOS latch (LVCL), master-slave transmission-gate latch pair (MTLP) and pulse-triggered latch (PTL). In the hybrid design, TFETs are used for critical path to reduce the clock-to-Q delay, and FinFETs are used for the rest of the circuits to reduce the power consumption. The hybrid latch circuits are shown to offer comparable or better clock-to-Q delays while exhibiting superior EDP compared with all TFET implementations. Among the four types of latch circuits, the hybrid TFET-FinFET LVCL exhibits the most significant clock-to-Q delay and EDP improvements at low operating voltage (<; 0.30V). With work function variation (WFV) and fin line-edge roughness (LER), the hybrid LVCL exhibits superior and comparable EDP variability compared with all FinFET and all TFET implementations at 0.25V.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we investigate the hybrid TFET-FinFET latch circuits and compare the clock-to-Q delay, dynamic energy, leakage power and energy-delay product (EDP) with all FinFET and all TFET implementations in near-threshold region. We use atomistic 3D TCAD mixed-mode simulations for transistor characteristics and HSPICE circuit simulations with look-up table based Verilog-A models calibrated with TCAD simulation results. Four types of latch circuits are evaluated, including standard clocked CMOS latch (SCCL), low-voltage C2MOS latch (LVCL), master-slave transmission-gate latch pair (MTLP) and pulse-triggered latch (PTL). In the hybrid design, TFETs are used for critical path to reduce the clock-to-Q delay, and FinFETs are used for the rest of the circuits to reduce the power consumption. The hybrid latch circuits are shown to offer comparable or better clock-to-Q delays while exhibiting superior EDP compared with all TFET implementations. Among the four types of latch circuits, the hybrid TFET-FinFET LVCL exhibits the most significant clock-to-Q delay and EDP improvements at low operating voltage (<; 0.30V). With work function variation (WFV) and fin line-edge roughness (LER), the hybrid LVCL exhibits superior and comparable EDP variability compared with all FinFET and all TFET implementations at 0.25V.