{"title":"Controlling the TCR of thin film resistors","authors":"P. Steinmann, S. M. Jacobsen, R. Higgins","doi":"10.1109/ESSDERC.2000.194812","DOIUrl":null,"url":null,"abstract":"We demonstrate that the temperature coefficient of resistance (TCR) of NiCr thin film resistors can be effectively controlled by changing the film thickness over a certain range. We have observed a direct dependency between TCR and sheet resistance, which can be expressed by the equation: TCR(in ppm/C)=525*exp(0.01*sheet (in Ohms/sq)). This behavior can be explained by considering the transition from a bulk conductivity mechanism to a mechanism dominated by charge carrier creation and tunneling between metallic islands.","PeriodicalId":354721,"journal":{"name":"30th European Solid-State Device Research Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"30th European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2000.194812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We demonstrate that the temperature coefficient of resistance (TCR) of NiCr thin film resistors can be effectively controlled by changing the film thickness over a certain range. We have observed a direct dependency between TCR and sheet resistance, which can be expressed by the equation: TCR(in ppm/C)=525*exp(0.01*sheet (in Ohms/sq)). This behavior can be explained by considering the transition from a bulk conductivity mechanism to a mechanism dominated by charge carrier creation and tunneling between metallic islands.