P. Sîrbu, W. Friedl, D. Mihailescu, L. Savin, A. Scripcaru, N. Forna, Mihnea Theodor Sirbu, M. Perțea, R. Tudor
{"title":"Clinical and Experimental Biomechanical Studies Regarding Innovative Implants in Traumatology","authors":"P. Sîrbu, W. Friedl, D. Mihailescu, L. Savin, A. Scripcaru, N. Forna, Mihnea Theodor Sirbu, M. Perțea, R. Tudor","doi":"10.5772/intechopen.91728","DOIUrl":null,"url":null,"abstract":"Fracture treatment has experienced a fascinating evolution in the last years. The aim of this chapter is to reveal some clinical and biomechanical studies regarding innovative implants. After a short introduction (1), we intend to present our results regarding (2) dynamic condylar screw versus condylar blade plate in complex supracondylar femoral fractures; (3) biomechanical analysis of four types of implants in humeral fractures; (4) clinical and experimental studies for optimal stabilization of trochanteric fractures: the gliding nail; (5) intramedullary XS nail for pilon and ankle fractures: design, biomechanics, and clinical results; (6) the XS nail for the treatment of patella and olecranon fractures; and (7) plates with polyaxial stability for fractures of distal radius and proximal humerus. In conclusion, the authors highlight the advantages of these innovative implants in difficult trauma cases. gives surprising values of torsion forces relatively close to the longer locked plate (AxSOS—Stryker). Clinical and biomechanical studies revealed the superiority of intramedullary gliding nail over DHS and gamma nail due to the double-T blade profile. The XS nail is a secure device for ankle and pilon fractures; in osteoporotic bone and difficult soft tissue conditions, it shows significant advantage over the plate fixation. In fractures of the patella and olecranon, the XS nail allows uniform compression of the fracture surface and overcomes the disadvantages of the AO tension band. Clinical and biomechanical tests proved the superiority of the polyaxial locked plates in distal radius and proximal humerus fractures due to the adjustable trajectory of the screws; in distal radius, the XS nail is stronger than the plates.","PeriodicalId":256258,"journal":{"name":"Recent Advances in Biomechanics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fracture treatment has experienced a fascinating evolution in the last years. The aim of this chapter is to reveal some clinical and biomechanical studies regarding innovative implants. After a short introduction (1), we intend to present our results regarding (2) dynamic condylar screw versus condylar blade plate in complex supracondylar femoral fractures; (3) biomechanical analysis of four types of implants in humeral fractures; (4) clinical and experimental studies for optimal stabilization of trochanteric fractures: the gliding nail; (5) intramedullary XS nail for pilon and ankle fractures: design, biomechanics, and clinical results; (6) the XS nail for the treatment of patella and olecranon fractures; and (7) plates with polyaxial stability for fractures of distal radius and proximal humerus. In conclusion, the authors highlight the advantages of these innovative implants in difficult trauma cases. gives surprising values of torsion forces relatively close to the longer locked plate (AxSOS—Stryker). Clinical and biomechanical studies revealed the superiority of intramedullary gliding nail over DHS and gamma nail due to the double-T blade profile. The XS nail is a secure device for ankle and pilon fractures; in osteoporotic bone and difficult soft tissue conditions, it shows significant advantage over the plate fixation. In fractures of the patella and olecranon, the XS nail allows uniform compression of the fracture surface and overcomes the disadvantages of the AO tension band. Clinical and biomechanical tests proved the superiority of the polyaxial locked plates in distal radius and proximal humerus fractures due to the adjustable trajectory of the screws; in distal radius, the XS nail is stronger than the plates.